SIFT特征

一.SIFT特征

SIFT算子(Scale-Invariant FeatureTransform),是一种图像的局部描述子,具有尺度、旋转、平移的不变性,而且对光照变化、仿射变换和3维投影变换具有一定的鲁棒性。另外,它还具有以下有点:

a.很好的独特性,适于在海量特征数据库中进行快速、准确的匹配;

b.算法产生的特征点在图像中的密度很大,速度可以达到实时要求;

c.由于 SIFT 特征描述子是向量的形式,它可以与其他形式的特征向量进行联合。

Sift在一定程度上可以解决:

目标的旋转、缩放、平移(RST)

图像仿射/投影变换(视点viewpoint)

光照影响(illumination)

目标遮挡(occlusion)

杂物场景(clutter)

噪声

二、sift特征提取步骤

SIFT算法的实质可以归为在不同尺度空间上查找特征点(关键点)的问题。SIFT算法实现物体识别主要有三大工序:

  1. 构造DOG尺度空间

  2. 关键点搜索与精确定位

  3. 方向赋值

  4. 关键点描述

  5. 特征匹配

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值