一.SIFT特征
SIFT算子(Scale-Invariant FeatureTransform),是一种图像的局部描述子,具有尺度、旋转、平移的不变性,而且对光照变化、仿射变换和3维投影变换具有一定的鲁棒性。另外,它还具有以下有点:
a.很好的独特性,适于在海量特征数据库中进行快速、准确的匹配;
b.算法产生的特征点在图像中的密度很大,速度可以达到实时要求;
c.由于 SIFT 特征描述子是向量的形式,它可以与其他形式的特征向量进行联合。
Sift在一定程度上可以解决:
目标的旋转、缩放、平移(RST)
图像仿射/投影变换(视点viewpoint)
光照影响(illumination)
目标遮挡(occlusion)
杂物场景(clutter)
噪声
二、sift特征提取步骤
SIFT算法的实质可以归为在不同尺度空间上查找特征点(关键点)的问题。SIFT算法实现物体识别主要有三大工序:
构造DOG尺度空间
关键点搜索与精确定位
方向赋值
关键点描述
特征匹配