C++机器学习库整理

这篇博客列举了多个C++编写的机器学习库,包括Google的TensorFlow、伯克利的Caffe、微软的CNTK、mlpack、DyNet、Shogun、FANN、OpenNN、SHARK库等,涵盖深度学习、神经网络、随机森林、梯度提升、自然语言处理等多个领域。此外,还提到了计算机视觉库如OpenCV,以及Facebook的FlashLight和Habitat-SIM等前沿工具。
摘要由CSDN通过智能技术生成
  1. 来自谷歌AI的TensorFlow

由 Google 开发的热门深度学习库,它拥有自己的工具、库和社区资源生态系统,使研究人员和开发人员能够轻松构建和部署 ML 支持的应用程序。

官方文档:https://www.tensorflow.org/lite/microcontrollers/library

GitHub:https://github.com/tensorflow/serving
  1. Berkeley(伯克利)的Caffe

伯克利视觉和学习中心开发了用于快速功能嵌入或 Caffe C++卷积架构的深度学习框架。

GitHub:https://github.com/intel/caffe
  1. 微软认知工具包 (CNTK)

微软认知工具包是一个统一的深度学习工具包,它通过定向图帮助将神经网络翻译为一系列计算步骤。

GitHub:https://github.com/microsoft/CNTK
  1. mlpack 库

mlpack是一个快速、灵活的机器学习库,用 C++编写,提供具有 Python 绑定、Julia 绑定和 C++ 类的最先进的机器学习算法。

GitHub:https://github.com/mlpack/mlpack
  1. DyNet

动态神经网络工具包(支持动态计算图形)或 DyNet 是一种用 C++ (在 Python 中具有绑定)编写的高性能神经网络库,可以在 CPU 或 GPU 上高效运行。它支持自然语言处理、图形结构、强化学习等。

GitHub:https://github.com/clab/dynet
  1. Shogun

Shogun 是一个开源机器学习库,它提供广泛的高效和统一的机器学习方法,如多种数据表示、算法类和通用工具的组合,用于快速原型设计数据管道。

GitHub:https://github.com/shogun-toolbox/shogun
  1. FANN

快速人工神经网络(FANN)是C语言中的多层人工神经网络,支持完全连接和稀疏连接的网络。它支持固定点和浮点中的跨平台执行。此外,它还支持基于拓扑的不断发展训练和基于反传播的DL模型培训。

GitHub:https://github.com/libfann/fann
  1. OpenNN

开放神经网络 (OpenNN) 是一个开源 (C/C++) 神经网络高性能库,用于高级分析,支持分类、回归、预测等。

GitHub:https://github.com/Artelnics/opennn
  1. SHARK库

Shark 是一个快速、模块化、通用的开源机器学习库 (C/C++),用于应用和研究,支持线性和非线性优化、基于内核的学习算法、神经网络以及各种其他机器学习技术。

GitHub:https://github.com/Shark-ML/Shark
  1. Armadillo

Armadillo 是一个线性代数 (C/C++) 库,其功能类似于 Matlab。该库以快速将研究代码转换为生产环境、模式识别、计算机视觉、信号处理、生物信息学、统计学、计量经济学等而著名。

  1. Faisis

faiss:此库(C/C++)用于高效相似性搜索和密集向量聚类。它包含以任何大小的向量集进行搜索的算法,这些向量可能不适合 RAM 中的矢量集。它还支持通过 CUDA 提供的可选 GPU 和可选 Python 接口。

GitHub:https://github.com/facebookresearch/faiss

12.随机森林

https://github.com/zhufangzhou/RandomForest
https://github.com/bjoern-andres/random-forest
  1. Boosting

XGBoost – 并行优化的通用梯度提升库。


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值