- 来自谷歌AI的TensorFlow
由 Google 开发的热门深度学习库,它拥有自己的工具、库和社区资源生态系统,使研究人员和开发人员能够轻松构建和部署 ML 支持的应用程序。
官方文档:https://www.tensorflow.org/lite/microcontrollers/library
GitHub:https://github.com/tensorflow/serving
- Berkeley(伯克利)的Caffe
伯克利视觉和学习中心开发了用于快速功能嵌入或 Caffe C++卷积架构的深度学习框架。
GitHub:https://github.com/intel/caffe
- 微软认知工具包 (CNTK)
微软认知工具包是一个统一的深度学习工具包,它通过定向图帮助将神经网络翻译为一系列计算步骤。
GitHub:https://github.com/microsoft/CNTK
- mlpack 库
mlpack是一个快速、灵活的机器学习库,用 C++编写,提供具有 Python 绑定、Julia 绑定和 C++ 类的最先进的机器学习算法。
GitHub:https://github.com/mlpack/mlpack
- DyNet
动态神经网络工具包(支持动态计算图形)或 DyNet 是一种用 C++ (在 Python 中具有绑定)编写的高性能神经网络库,可以在 CPU 或 GPU 上高效运行。它支持自然语言处理、图形结构、强化学习等。
GitHub:https://github.com/clab/dynet
- Shogun
Shogun 是一个开源机器学习库,它提供广泛的高效和统一的机器学习方法,如多种数据表示、算法类和通用工具的组合,用于快速原型设计数据管道。
GitHub:https://github.com/shogun-toolbox/shogun
- FANN
快速人工神经网络(FANN)是C语言中的多层人工神经网络,支持完全连接和稀疏连接的网络。它支持固定点和浮点中的跨平台执行。此外,它还支持基于拓扑的不断发展训练和基于反传播的DL模型培训。
GitHub:https://github.com/libfann/fann
- OpenNN
开放神经网络 (OpenNN) 是一个开源 (C/C++) 神经网络高性能库,用于高级分析,支持分类、回归、预测等。
GitHub:https://github.com/Artelnics/opennn
- SHARK库
Shark 是一个快速、模块化、通用的开源机器学习库 (C/C++),用于应用和研究,支持线性和非线性优化、基于内核的学习算法、神经网络以及各种其他机器学习技术。
GitHub:https://github.com/Shark-ML/Shark
- Armadillo
Armadillo 是一个线性代数 (C/C++) 库,其功能类似于 Matlab。该库以快速将研究代码转换为生产环境、模式识别、计算机视觉、信号处理、生物信息学、统计学、计量经济学等而著名。
- Faisis
faiss:此库(C/C++)用于高效相似性搜索和密集向量聚类。它包含以任何大小的向量集进行搜索的算法,这些向量可能不适合 RAM 中的矢量集。它还支持通过 CUDA 提供的可选 GPU 和可选 Python 接口。
GitHub:https://github.com/facebookresearch/faiss
12.随机森林
https://github.com/zhufangzhou/RandomForest
https://github.com/bjoern-andres/random-forest
- Boosting
XGBoost – 并行优化的通用梯度提升库。