BZOJ3238[Ahoi2013]差异

BZOJ3238[Ahoi2013]差异

题目描述

这里写图片描述
n<=500000 n <= 500000 ,都是小写字母

输入

一行,一个字符串S

输出

一行,一个整数,表示所求值


Solution

公式的前两项可以化简

ni=1nj=i+1len(Ti)+len(Tj)=(n1)n(n+1)2 ∑ i = 1 n ∑ j = i + 1 n l e n ( T i ) + l e n ( T j ) = ( n − 1 ) ∗ n ∗ ( n + 1 ) 2 ;

然后只要求出所有后缀的 lcp l c p (n1)n(n+1)2 ( n − 1 ) ∗ n ∗ ( n + 1 ) 2 减一下就好
求一遍后缀数组 O(nlogn) O ( n l o g n )
然后 n2 n 2 枚举后缀? naive!
后缀数组求出来以后就知道了height
问题就转化成了求所有区间最小值的和
因为

lcp(Ti,Tj)=min(height(k))j<=k<=i,rank[j]<=rank[j] l c p ( T i , T j ) = m i n ( h e i g h t ( k ) ) j <= k <= i , r a n k [ j ] <= r a n k [ j ]

所以对于一些lcp相同的区间我们不必多次求
我们可以用单调栈分别从左从右延伸
区间数量怎么表示?
其实左区间长度乘以右区间长度就好

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef int mian;
#define int long long
#define maxn 1000010
int t1[maxn],t2[maxn];
char str[maxn];
int s[maxn],height[maxn],rak[maxn],sa[maxn];
int c[maxn],l[maxn],r[maxn],stk[maxn];
void SA(int n){
    int *x=t1,*y=t2;
    int m=100000;
    for(int i=1;i<=m;++i) c[i]=0;
    for(int i=1;i<=n;++i) c[x[i]=s[i]]++;
    for(int i=1;i<=m;++i) c[i]+=c[i-1];
    for(int i=n;i;--i) sa[c[x[i]]--]=i;
    for(int k=1;k<=n;k<<=1){
        int p=0;
        for(int i=n-k+1;i<=n;++i) y[++p]=i;
        for(int i=1;i<=n;++i) if(sa[i]>k) y[++p]=sa[i]-k;
        for(int i=1;i<=m;++i) c[i]=0;
        for(int i=1;i<=n;++i) c[x[y[i]]]++;
        for(int i=1;i<=m;++i) c[i]+=c[i-1];
        for(int i=n;i;--i) sa[c[x[y[i]]]--]=y[i];
        swap(x,y),p=1,x[sa[1]]=1;
        for(int i=2;i<=n;++i)
        x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?p:++p;
        if(p>=n) break;
        m=p;
    }
    for(int i=1;i<=n;++i) rak[sa[i]]=i;
    int k=0;
    for(int i=1;i<=n;++i){
        if(k) --k;
        int j=sa[rak[i]-1];
        while(s[i+k]==s[j+k])++k;
        height[rak[i]]=k;
    }
    return ;
}
mian main(){
    scanf("%s",str+1);
    int n=strlen(str+1);
    for(int i=1;i<=n;++i) s[i]=str[i]-'a'+1;
    SA(n);
    int top=0;
    int ans=n*(n-1)*(n+1)>>1;
    for(int i=1;i<=n;++i){
        while(top&&height[stk[top]]>height[i]){
            r[stk[top--]]=i-1;
        }
        stk[++top]=i;
    }
    while(top) r[stk[top--]]=n;
    for(int i=n;i;--i){
        while(top&&height[i]<=height[stk[top]]) l[stk[top--]]=i+1;
        stk[++top]=i;
    }
    while(top) r[stk[top--]]=1;
    for(int i=1;i<=n;++i){
        ans-=height[i]*(r[i]-i+1)*((i-l[i]+1)<<1);
    }
    printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值