在线模板_矩阵快速幂及其解决Fibonacci斐波那契数列计算

矩阵快速幂模板及其应用到Fibonacci斐波那契数列计算

模板例题poj3070

#include<iostream>
using namespace std;
const int mod = 10000;
struct matrix {     //矩阵 
    int m[2][2];
}ans;

matrix base = { 1, 1, 1, 0 };

matrix multi(matrix a, matrix b) {  //矩阵相乘,返回一个矩阵 
    matrix tmp;
    for (int i = 0; i < 2; i++) {
        for (int j = 0; j < 2; j++) {
            tmp.m[i][j] = 0;
            for (int k = 0; k < 2; k++)
                tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
        }
    }
    return tmp;
}

int matrix_pow(matrix a, int n) {   //矩阵快速幂,矩阵a的n次幂 
    ans.m[0][0] = ans.m[1][1] = 1;  //初始化为单位矩阵 
    ans.m[0][1] = ans.m[1][0] = 0;
    while (n) {
        if (n & 1) ans = multi(ans, a);
        a = multi(a, a);
        n >>= 1;
    }
    return ans.m[0][1];
}

int main() {
    int n;
    while (cin>>n&&n!=-1) {
        cout << matrix_pow(base, n) << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值