- 博客(295)
- 收藏
- 关注
原创 几道面向对象试题
1、定义一个Point类来处理三维点points(x,y,z).该类有构造函数,拷贝构造函数,negate()成员函数将point的x,y和z值各乘-1, norm()成员函数返回该点到原点(0,0,0)的距离,一个print()成员函数显示x,y,和z的值。数据成员必须包含姓名、出生年份、死亡年份,一个构造函数,一个析构函数,读取数据的成员函数,一个print()成员函数显示所有数据。1、下列程序在构造函数和析构函数中申请和释放类的私有成员,请完成该类的实现。3、完成下面的类定义。
2024-11-07 01:00:00 1171
原创 语音识别简介
总之,语音识别作为一类重要的基础技术,应用十分广泛,并且己有不少产品为人们所 熟知,语音识别产业的增长主要靠渗透率的提升和应用的突破,主要的应用包括语音助手、 语音输入、语音搜索等,可应用在各类移动 APP 应用和终端应用等对人机交互有较高要求 的领域。语音识别与自然语音处理是机器能够“听懂”用户语言的主要技术基础,其中语音识别注 重对用户语言的感知,目前在中文语音识别上,国内已经达到 97%的语音识别准确率,这要 归功于深度神经网络的应用、算力的提高以及大数据的积累。
2024-11-07 01:00:00 197
原创 视觉传感器
视觉传感器的优点是探测范围 广、获取信息丰富,实际应用中常使用多个视觉传感器或者与其他传感器配合使用,通过一定 的算法可以得到物体的形状、距离、速度等诸多信息。有意 思的是,这一领域的许多尖端成果都是由初创公司先推出的,再被巨头收购后发扬光大,例如 Intel 收购 RealSense 实感摄像头,苹果收购 Kinect 的技术供应商 PrimeSense,Oculus 收购了一家主攻 高精确度手势识别技术的以色列技术公司 Pebbles Interfaces。
2024-11-06 08:34:14 91
原创 面向对象试题带答案
C)构造函数不能重载 D)构造函数也是成员函数,因此可以被其它函数调用。B)函数的定义不可以嵌套,但函数的调用可以嵌套。2) 多数运算符可以重载,个别运算符不能重载,运算符重载是通过函数定义实现的。C) 函数指针用来指示函数的出口地址 D) 函数指针就是指针函数的别名。)重载函数 B)虚函数 C)继承 D)析构函数。在C++语言程序中 A)函数的定义可以嵌套,但函数的调用不可以嵌套。7) 友元函数用来说明在类体内的非成员函数,它可以访问类中的所有成员。
2024-11-06 08:31:07 834
原创 鸿蒙生态的崛起为开发者带来了许多机遇与挑战
总的来说,鸿蒙生态的崛起给开发者开辟了新的机遇,但同时也要求他们面对新的挑战。开发者需要灵活应对,以抓住这一波机遇。
2024-11-05 01:00:00 88
原创 windows 11开发
这些应用在 Windows 11 上有着良好的用户体验和集成,符合用户在工作、娱乐和学习中的需求,也是开发者较为关注的热门方向。开发者在这些领域可以探索应用开发的机会,满足用户不断变化的需求。开发增强安全性功能的应用,利用 Windows 11 的安全特性(如 TPM 2.0、生物识别、安全启动等)。针对 IoT 设备开发支持 Windows 11 的应用,尤其在智能家居和工业自动化领域。:如 Coursera、Udemy,为用户提供丰富的课程资源。,为用户提供远程访问和虚拟机创建的能力。
2024-11-05 01:00:00 872
原创 批量和流式计算-各类技术平台比较-数据吞吐量
在传统的流式数据环境中,所处理的数据吞吐量往往在吉字节(GB)级别,这满足不了大数据流式计算环境对数据吞吐量的要求。在大数据流式计算环境中,数据的吞吐量往往在太字节(TB)级别以上,且其增长的趋势是显著的。大数据流式计算环境中的数据吞吐量问题的解决,一方面需要从硬件的角度进行系统的优化,设计出更符合大数据流式计算环境的硬件产品,在数据的计算能力上实现大幅提升;另一方面,更为重要的是,从系统架构的设计中进行优化和提升,设计出更加符合大数据流式计算特征的数据计算逻辑。
2024-11-04 01:00:00 209
原创 面向对象试题带答案
1、下列程序在构造函数和析构函数中申请和释放类的私有成员,请完成该类的实现。2、请根据提示完成该类的定义char *name;int age;int score;public:(3)//返回学生姓名return age;void display(){ //显示学生相关信息(4)Student(char* n,int a,int s){ //分别用n,a和s初始化学生的姓名,年龄和成绩。
2024-11-04 01:00:00 1602
原创 面向对象试题带答案
(1)下列函数中(1)是不能重载的。A)成员函数 B)非成员函数 C)析构函数 D)构造函数(2)下列重载函数的描述中,(2)是的。A)重载函数中不允许使用默认参数B)重载函数中编译系统根据参数表进行选择C)不要使用重载函数来描述毫不相干的函数D)构造函数重载将会给初始化带来多种方式(3)下面对友元函数描述的是(3)。A)友元函数的实现必须在类的内部定义B)友元函数是类的成员函数C)友元函数破坏了类的封装性和隐藏性D)友元函数不能访问类的私有成员。
2024-11-03 08:52:30 1069
原创 批量和流式计算-各类技术平台比较-负载均衡
一方面,在大数据流式计算环境中,系统的数据速率具有明显的突变性,并且持续时间往往无法有效预测,这就导致在传统环境中具有很好的理论和实践效果的负载均衡策略在大数据流式计算环境中将不再适用;另一方面,当前大多数开源的大数据流式计算系统在架构的设计上尚未充分地、全面地考虑整个系统的负载均衡问题。大数据流式计算环境中的负载均衡问题的解决需要结合具体的应用场景,系统地分析和总结隐藏在大数据流式计算中的数据流变化的基本特征和内在规律,结合传统系统负载均衡的经验,根据实践检验情况,不断进行相关机制的持续优化和逐步完善。
2024-11-03 01:00:00 125
原创 批量和流式计算-各类技术平台比较-状态一致性
在大数据流式计算环境中,维持系统中各节点间状态的一致性对于系统的稳定高效运行、故障恢复都至关重要。大数据流式计算环境对状态一致性提出了新的挑战:一方面,在系统实时性要求极高、数据速率动态变化的环境中,维护哪些数据的状态一致性,如何从高速、海量的数据流中识别这些数据是一个巨大的挑战;另一方面,在大规模分布式环境中,如何组织和管理实现系统状态一致性的相关数据,满足系统对数据的高效组织和精准管理的要求,也是一个巨大的挑战。大数据流式计算环境中的状态一致性问题的解决需要从系统架构的设计层面上着手。
2024-11-02 01:00:00 266
原创 正则表达式
此处的语言只表示“串的集合”,它与程序设计语言并无特殊关系(至少在此处是这样的)。该语言首先依赖于适用的字符集,它一般是A S C I I字符的集合或它的某个子集。有时该集比A S C I I字符的集合更普通一些,此处集合的元素称作符号( s y m b o l)。这样的字符称作元字符( m e t a c h a r a c t e r)或元符号(m e t a s y m b o l)。正则表达式r还包括字母表中的字符,但这些字符具有不同的含义:在正则表达式中,所有的符号指的都是模式。
2024-11-02 01:00:00 188
原创 C++试题带答案
假设原链表的结点是按学号(number)由小到大排列的。在已建立的学生链表中插入一新结点,使插入新结点后的链表仍然保持有序。Student * Insert(Student * head, Student * stud) //插入链表结点if((1)) //原链表为空链表head=stud;if((2)) //结点的插入位置在链首head=stud;//查找插入位置while((3)//插入结点(4)(5)
2024-11-01 01:00:00 679
原创 批量和流式计算-各类技术平台比较-系统容错
大数据流式计算环境对容错机制提出了新的挑战,一方面,数据流是实时、持续地到来的,呈现出时间上不可逆的特征,一旦数据流流过,再次重放数据流的成本是很大的,甚至是不现实的,由于数据流所呈现出的持续性和无限性,也无法预测未来流量的变化趋势;再则,需要针对不同类型的应用,从系统层面上设计符合其应用特征的数据容错级别和容错策略,避免不必要的资源浪费及应用需求的不吻合。大数据流式计算环境中的容错策略的确定,需要根据具体的应用场景进行系统的设计和权衡,并且需要充分考虑到流式大数据的持续性、无限性、不可恢复性等关键特征。
2024-11-01 01:00:00 261
原创 C++面向对象试题带答案
(1)在C++中,关于下列设置参数默认值的描述中,的是(1)。A)不允许设置参数的默认值B)设置参数默认值只能在定义函数时设置C)设置参数默认值时,应该是先设置右边的再设置左边的D)设置参数默认值时,应该全部参数都设置(2)编译时多态性通过使用(2)获得。A)重载函数 B)虚函数 C)继承 D)析构函数(3)派生类构造函数的成员初始化列表中,不能包含(3)。
2024-10-31 01:00:00 1628
原创 批量和流式计算-各类技术平台比较-可伸缩性
大数据流式计算环境对容错机制提出了新的挑战,一方面,数据流是实时、持续地到来的,呈现出时间上不可逆的特征,一旦数据流流过,再次重放数据流的成本是很大的,甚至是不现实的,由于数据流所呈现出的持续性和无限性,也无法预测未来流量的变化趋势;在大数据流式计算环境中,数据吞吐量呈现出了根本性的增加。大数据流式计算环境中的负载均衡问题的解决需要结合具体的应用场景,系统地分析和总结隐藏在大数据流式计算中的数据流变化的基本特征和内在规律,结合传统系统负载均衡的经验,根据实践检验情况,不断进行相关机制的持续优化和逐步完善。
2024-10-31 01:00:00 403
原创 Kafka系统
此外,在Kafka 消息系统中,通过仅保存订阅者已经计算数据的偏量信息,一方面可以有效地节省数据的存储空间,另一方面也简化了系统的计算方式,方便系统的故障恢复。当有订阅者和代理节点的状态发生变化时,才实时地进行系统的负载均衡的调整,保障整个系统处于一个良好的均衡状态。Kafka 是Linkedin 所支持的一款开源的、分布式的、高吞吐量的发布订阅消息系统,可以有效地处理互联网中活跃的流式数据,如网站的页面浏览量、用户访问频率、访问统计、好友动态等,开发语言是Scala,可以使用Java 进行编写。
2024-10-30 07:25:31 588
原创 C++试题带答案
A)基类的构造函数 B)派生类中成员对象的初始化。C)基类中成员对象的初始化 D)派生类中一般数据成员的初始化。A)先执行基类的构造函数,再执行成员对象的构造函数,最后执行派生类本身的构造函数。B)先执行基类的构造函数,再执行派生类本身的构造函数,最后执行成员对象的构造函数。C)先执行派生类本身的构造函数,再执行基类的构造函数,最后执行成员对象的构造函数。D)先执行派生类本身的构造函数,再执行成员对象的构造函数,最后执行基类的构造函数。
2024-10-29 09:58:31 736
原创 Storm 系统
任务拓扑(Task Topology)是Storm 的逻辑单元,一个实时应用的计算任务将被打包为任务拓扑后发布,任务拓扑一旦提交将会一直运行,除非显式地去中止。Bolt 负责对接收到的数据流进行计算,实现过滤、聚合、查询等具体功能,可以级联,也可以向外发送数据流。Storm 是Twitter 支持开发的一款分布式的、开源的、实时的、主从式的大数据流式计算系统,使用的协议为Eclipse Public License 1.0,其核心部分使用高效流式计算的函数式语言Clojure 编写,极大地提高了系统性能。
2024-10-29 09:55:44 210
原创 Spark计算框架
Spark 拥有Hadoop MapReduce 所具有的优点,但不同于MapReduce 的是,Job 中间输出的结果可以保存在内存中,从而不再需要读写HDFS(MapReduce 的中间结果要放在文件系统上),因此,在性能上,Spark 比MapReduce 框架快100 倍左右,排序100TB 的数据只需要20 分钟左右。随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐、用户行为分析等。
2024-10-28 01:00:00 309
原创 数据建模-数据管理
首先是数据标准,有了标准才有数据质量,质量是数据满足业务需求使用的程度。有了标准之后,能够衡量数据,可以在整个平台的每一层做技术上的校验或者业务上的校验,可以做到自动化的配置和相应的校验,生成报告来帮助我们解决问题。融合模型一般用于维度建模,主要实现跨越数据的整合,整合的形式可以是汇总、关联,也包括解析;挖掘模型其实是偏应用的,但如果用的人多了,你也可以把挖掘模型作为企业的知识沉淀到平台,比如某个模型具有很大的共性,就应该把它规整到平台模型,以便开放给其他人使用,这是相对的,没有绝对的标准。
2024-10-28 01:00:00 152
原创 时间序列分段和预测
给定的数据集包含从ID 1000到ID 7444的6445个ID。该数据集提供了2009年7月14日至2010年12月31日的每日用电量。客户不仅来自住房,也来自企业。数据集包含163.262个缺失数据,因为有新客户;有些仪表id在1000-7444之间没有观察到。保留异常值,这样大公司或太小的房屋的客户就不会被淘汰。通过贝叶斯信息准则(BIC),将客户划分为5类。
2024-10-27 01:00:00 1298
原创 Hadoop分布式系统架构
到达这样一个层次的时候,企业所要解决的不仅是性能问题,还包括时效问题、更复杂的分析挖掘功能的实现等。近些年来,Hadoop 的易用性有了很大的提升,SQL-on-Hadoop 技术大量涌现,包括Hive、Impala、Spark SQL 等。需要使用Hadoop的时候,也没什么其他的方案可选择(要么太贵,要么不行),没达到这个数据量的时候,也没人愿意碰它。Hadoop 生态体系非常庞大,各公司基于Hadoop 所实现的也不仅限于数据平台,还包括数据分析、机器学习、数据挖掘、实时系统等。
2024-10-27 01:00:00 358
原创 大数据技术
通过创新性的大数据分析方法实现对大量数据快速、高效、及时地分析与计算,得出跨数据间的、隐含于数据中的规律、关系和内在逻辑,帮助用户理清事件背后的原因,预测发展趋势,获取新价值。大数据分析的使用者有大数据分析专家,也有普通用户,但是二者对于大数据分析最基本的要求都是可视化分析,因为可视化分析能够直观地呈现大数据的特点,同时能够非常容易地被读者所接受,就如同看图说话一样简单明了。大数据分析的基础就是以上几个方面,当然更加深入大数据分析的话,还有很多更加有特点的、更加深入的、更加专业的大数据分析方法。
2024-10-26 08:24:45 106
原创 C++试卷带答案
1、编写函数char* copystr(char * dest,const char * source ,int m)将字符串source中第m个字符开始的全部字符复制成另一个字符串dest,并返回复制的串,请在主函数中输入字符串及m的值并输出复制结果。cout<<"求得的子串:"<<sub_str<<endl;函数funp( )的功能:比较两个参数字符串的大小,并返回第一个不相同字符的差值。C)定义该函数时所指定的函数类型 D)调用该函数时的主调函数类型。//p指向要删除的结点。
2024-10-26 08:22:22 907
原创 C++试题带答案
1.char ch;if(!abort();if(!abort();while(!程序的功能:?2.int num;//学号//姓名、性别//年龄、成绩STU mystudent[]={{2111,"张三","男",20,80},{2104,"李红","女",18,82},{2121,"刘星 ","男",21,78},{2118,"余华 ","男",20,90}i<size;i++)
2024-10-25 01:00:00 973
原创 流式大数据的特征
在大数据流式计算环境中,数据的产生完全由数据源确定,由于不同的数据源在不同时空范围内的状态不统一且发生动态变化,导致数据流的速率呈现出了突发性的特征。前一时刻的数据速率和后一时刻的数据速率可能会有巨大的差异,这就需要系统具有很好的可伸缩性,能够动态适应不确定流入的数据流,具有很强的系统计算能力和大数据流量动态匹配的能力。在大数据流式计算环境中,各数据流之间、同一数据流内部各数据元素之间是无序的:一方面,由于各个数据源之间是相互独立的,所处的时空环境也不尽相同,因此无法保证数据流间的各个数据元素的相对顺序;
2024-10-25 01:00:00 184
原创 流式计算的应用场景
大数据流式计算的应用场景较多,按照数据的产生方式、数据规模大小以及技术成熟度高低3个不同维度,金融银行业应用、互联网应用和物联网应用是3 种典型的应用场景,体现了大数据流式计算的基本特征。在物联网领域中,大数据流式计算的典型应用场景如下。据统计,目前互联网中75% 的数据来源于个人,主要以图片、音频、视频数据形式存在,需要实时分析和计算这些大量、动态的数据。社交网站:需要实时分析用户的状态信息,及时提供最新的用户分享信息给相关的朋友,准确地推荐朋友,推荐主题,提升用户体验,并能及时发现和屏蔽各种欺骗行为。
2024-10-24 07:24:14 479
原创 C++试题带答案
1..所谓数据封装就是将一组数据和1组装在一起,形成一个实体,这实体也就是对象。2.面向对象程序设计语言所具备的关键要素是抽象、封装、继承和2。3.类的构造函数被自动调用执行的情况发生在定义该类的3时。4.假定用户没有给一个名为A的类定义析构函数,则系统自动给出的缺省析构函数定义为4。5.通过C++语言中的5机制,可以从现存类中构建其派生类。6.类的私有成员只能被它的成员函数和6访问。7.若派生类的成员函数不能直接访问基类中继承来的某个成员,则该成员一定是基类中的。
2024-10-24 07:15:54 1019
原创 大数据交易难点
简单地讲,大数据需要有大量能互相连接的数据(无论是自己的,还是购买、交换别人的),它们在一个大数据计算平台(或者能互通的各个数据节点上),有相同的数据标准能正确的关联(如ETL、数据标准),通过大数据相关处理技术(如算法、引擎、机器学习),形成自动化、智能化的大数据产品或者业务,进而形成大数据采集、反馈的闭环,自动智能地指导人类的活动、工业制造、社会发展等。例如双方的数据上传到大数据交易平台,双方可以使用对方的数据以获得特定的结果,比如通过上传一些算法、模型而获得结果,双方都不能看到对方的任何详细数据。
2024-10-23 01:00:00 252
原创 大数据的计算模式
对于无须先存储,可以直接进行数据计算,实时性要求很严格,但数据的精确度要求稍微宽松的应用场景,流式计算具有明显优势。例如Twitter 的Storm、Yahoo 的S4 就是典型的流式数据计算架构,数据在任务拓扑中被计算,并输出有价值的信息。目前,关于大数据批量计算相关技术的研究相对成熟,形成了以谷歌的MapReduce 编程模型、开源的Hadoop 计算系统为代表的高效、稳定的批量计算系统,在理论上和实践中均取得了显著成果。批量计算首先进行数据的存储,然后对存储的静态数据进行集中计算。
2024-10-23 01:00:00 213
原创 C++试题带答案
1.编写一个读取一个文本文件,并将所读到的各行在行首加上行号后,逐行输出到另一个文本文件中的程序。Setc( ): 将Buffer中第 index 个元素的值用newchar替换。3.简述String类中Setc、Getc和Append三个函数的功能。Getc( ): 返回Buffer中第 index个元素的值。2.试写出下列程序中函数fun()的功能及程序的输出结果。函数fun()的功能:实现整数m的逆向输出。1.试写出下列程序的输出结果与功能。功能:求所有同学中年龄最大的同学。
2024-10-22 01:00:00 676
原创 大数据的误区
很多人觉得拥有数据,特别是拥有大量的数据,就是大数据了,这肯定是不对的,数据量大不是大数据,比如气象数据很大,如果仅仅用于气象预测,只要计算能力跟上就行,还远远没有发挥它的价值。大数据计算平台是大数据应用的技术基础,是大数据闭环中非常重要的一环,也是不可缺少的一环,但是不能说有了计算平台就有了大数据。在大数据闭环系统中,万物都是数据产生者,也是数据使用者,通过自动化、智能化的闭环系统自动学习、智能调整,从而提升整体的生产效率。他们做的是大数据的一种应用,可以说已经是大数据的一种了。大数据有不少的误区。
2024-10-22 01:00:00 369
原创 语音识别技术
早在2016年年初,美国麻省理工学院(MIT)主办的知名科技期刊《麻省理工科技评论》评选出了“2016年十大突破技术”,语音识别位列第三,与其他技术一起“到达一个里程碑式的阶段或即将到达这一阶段”。深度神经网络声学模型主要应用于声学、语言模型建模、解码等各个主要环节,模型主要包括深度神经网络、长短时记忆网络(LSTM)、双向长短时记忆网络(BLSTM)、深度卷积神经网络(Deep CNN)、Residual/Highway 网络等模型。从此以后,基于深度神经网络声学模型技术的研究变得异常火热。
2024-10-21 07:42:51 310
原创 C++考试题带答案
1.函数的原型说明是对将要使用的函数进行“框架”说明,它包括(1)、函数名、一对括号及其括号内的各个函数形参的类型,形参名可以省略。2.函数可以嵌套调用,但不能嵌套(2)。3.在递归函数的定义中,必须有一个确定是否能避免递归调用的测试条件。如果条件(3)时就递归调用,否则就不再递归调用。(填“满足”或“不满足”)4.重载函数间不能只是函数的返回值类型不同,应至少在形参的个数、(4)或参数顺序上有所不同。5.在说明带有多个默认参数值的函数时,多个默认参数值应(5) 设置。
2024-10-21 07:38:15 1048
原创 时间序列数据聚类方法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise):基于密度的聚类算法,可以找到任意形状的簇,并且能够识别噪声点。- 基于符号的方法:将时间序列转换为一系列符号,例如通过比较相邻点的相对位置,然后使用这些符号进行聚类。- 基于角度的方法:计算时间序列与其起始点之间的角度,并使用这些角度来进行聚类。- 基于特征的距离度量:使用提取的特征计算距离,如欧几里得距离,然后进行聚类。
2024-10-20 08:50:05 380
原创 时间序列数据
同时,随着算法的不断进步,预测模型的复杂性和预测结果的可靠性也在不断提升。在中国,随着数字经济的发展,时间序列预测技术在工业自动化、智慧城市、金融科技等领域的应用也在不断深化。时间序列预测的基本任务是,基于过去和现在的数据,预测未来的一个或多个值。1. 统计模型:如ARIMA(自回归积分滑动平均模型)、SARIMA(季节性ARIMA)等模型仍然在研究和使用,特别是在需要模型解释性的场合。在研究方面,时间序列预测方法已经从传统的统计方法发展到基于机器学习,尤其是深度学习的方法。
2024-10-20 08:49:54 395
原创 人工智能、机器学习、深度学习
2015 年以来,人工智能开始大爆发。深度学习是机器学习的重要分支,作为新一代的计算模式,深度学习力图通过分层组合多个非线性函数来模拟人类神经系统的工作过程,其技术的突破掀起了人工智能的新一轮发展浪潮。深度学习的典型代表是Google AlphaGo,而AlphaGo Zero采用纯强化学习的方法进一步扩展了人工智能技术,不需要人类的样例或指导,不提供基本规则以外的任何领域知识,在它自我对弈的过程中,神经网络被调整、更新,以预测下一个落子位置以及对局的最终赢家,并以100:0 的战绩击败AlphaGo。
2024-10-19 01:00:00 196
原创 机器学习实战
虽然这是一个简化的实战案例,但实际应用中可能会更加复杂,比如处理更大规模的数据,进行更复杂的特征工程,或者应用更高级的模型和算法。无监督学习(Unsupervised Learning):在无监督学习中,模型使用没有标签的数据进行训练。深度学习(Deep Learning):一种基于多层神经网络的学习方法,适用于大规模数据和复杂模型(如图像识别、自然语言处理等)。支持向量机(SVM):通过寻找最佳的超平面将数据分为不同的类别,非常适合高维空间的数据。通常使用70%的数据用于训练,30%的数据用于测试。
2024-10-19 01:00:00 646
Visual C++ MFC例子,从基础例子到提高,总共11个主题
2024-08-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人