大数据交易难点

在未来,数据将成为商业竞争最重要的资源,谁能更好地使用大数据,谁将领导下一代的商业潮流。所谓无数据,不智能;无智能,不商业。下一代的商业模式就是基于数据智能的全新模式,虽然才开始萌芽,才有几个有限的案例,但是其巨大的潜力已经被人们认识到。简单地讲,大数据需要有大量能互相连接的数据(无论是自己的,还是购买、交换别人的),它们在一个大数据计算平台(或者能互通的各个数据节点上),有相同的数据标准能正确的关联(如ETL、数据标准),通过大数据相关处理技术(如算法、引擎、机器学习),形成自动化、智能化的大数据产品或者业务,进而形成大数据采集、反馈的闭环,自动智能地指导人类的活动、工业制造、社会发展等。但是,数据交易并没有这么简单,因为数据交易涉及以下几个非常大的问题。

(1)保护用户隐私信息
在Facebook 隐私泄露事件之后,其创始人兼CEO 马克·扎克伯格(Mark Zuckerberg)称该公司没能保护好用户的数据,承诺这种事情永远不会再发生。扎克伯格为了挽回公司声誉,大量投放道歉广告,以及接受国会的洗礼(见图3-2)。隐私泄露事件使得该公司的市值在事件爆发的一周内蒸发了近580 亿美元(约合3661 亿元)。
欧盟已经出台了苛刻的数据保护条例,还处在萌芽状态的中国大数据行业,怎么确保用户的隐私信息不被泄漏呢?对于一些非隐私信息,比如地理数据、气象数据、地图数据进行开放、交易、分析是非常有价值的,但是一旦涉及用户的隐私数据,特别是单个人的隐私数据,就会涉及道德与法律的风险。

数据交易之前的脱敏或许是一种解决办法,但是并不能完全解决这个问题,因此一些厂商提出了另一种解决思路,基于平台担保的“可用不可见”技术。例如双方的数据上传到大数据交易平台,双方可以使用对方的数据以获得特定的结果,比如通过上传一些算法、模型而获得结果,双方都不能看到对方的任何详细数据。
(2)数据的所有者问题
数据作为一种生产资料,跟农业时期的土地、工业时期的资本不一样,使用之后并不会消失。如果作为数据的购买者,这个数据的所有者到底是谁?怎么确保数据的购买者不会再次售卖这些数据?或者购买者加工了这些数据之后,加工之后的数据所有者是谁?
(3)数据使用的合法性问题
大数据营销中,目前用得最多的就是精准营销。数据交易中,最值钱的也是个人数据。我们日常分析做的客户画像,目的就是给海量客户分群、打标签,然后有针对性地开展定向营销和服务。然而,如果利用用户的个人信息(比如年龄、性别、职业等)进行营销,必须事先征得用户的同意,才能向用户发送广告信息,还是可以直接使用?
所以,数据的交易与关联使用必须解决数据标准、立法以及监管的问题,在未来,不排除有专门的法律,甚至专业的监管机构,如各地成立大数据管理局来监管数据的交易与使用问题。如果真的到了这一天,那也是好事,数据要流通起来才会发挥更大的价值。如果每个企业都只有自己的数据,即使消除了企业内部的信息孤岛,还有企业外部的信息孤岛。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值