本章包括以下题目:
首先来讲第413题
如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。
例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。
给你一个整数数组 nums ,返回数组 nums 中所有为等差数组的 子数组 个数。
子数组 是数组中的一个连续序列。
示例 1:
输入:nums = [1,2,3,4]
输出:3
解释:nums 中有三个子等差数组:[1, 2, 3]、[2, 3, 4] 和 [1,2,3,4] 自身。
示例 2:
输入:nums = [1]
输出:0
提示:
1 <= nums.length <= 5000
-1000 <= nums[i] <= 1000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/arithmetic-slices
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
先来分享一下我的笨比暴力法
class Solution {
public int numberOfArithmeticSlices(int[] nums) {
if(nums.length<3) return 0;
int len=nums.length;
int ans=0;
boolean dp[][]=new boolean[len][len];
for(int i=0;i<len-2;i++){
for(int l=2;l<len-i;l++){
if(nums[i+l]-nums[i+l-1]==nums[i+1]-nums[i]){
if(l==2){
dp[i][i+l]=true;
}else if(l>2&&dp[i][i+l-1]==true){
dp[i][i+l]=true;
}
}else{
break;
}
}
}
for(int i=0;i<len-2;i++){
for(int j=i+2;j<len;j++){
if(dp[i][j]==true){
ans++;
}
}
}
return ans;
}
}
其实对于这种题O(n)的时间复杂度是绝对足够的,只要在过程中修正等差数列的差的值即可。
class Solution {
public int numberOfArithmeticSlices(int[] nums) {
int len=nums.length;
if(len<3) return 0;
int ans=0;
int t=0;
int d=nums[1]-nums[0];
for(int i=2;i<len;i++){
if(nums[i]-nums[i-1]==d){
t++;
}else{
d=nums[i]-nums[i-1];
t=0;
}
ans+=t;
}
return ans;
}
}
这里注意这个t的值,代表这一轮等差数列可以拆成多少子等差数列。
接下来是第91题:
一条包含字母 A-Z 的消息通过以下映射进行了 编码 :
'A' -> "1"
'B' -> "2"
...
'Z' -> "26"
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,"11106" 可以映射为:
"AAJF" ,将消息分组为 (1 1 10 6)
"KJF" ,将消息分组为 (11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 "06" 不能映射为 "F" ,这是由于 "6" 和 "06" 在映射中并不等价。
给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。
示例 1:
输入:s = "12"
输出:2
解释:它可以解码为 "AB"(1 2)或者 "L"(12)。
示例 2:
输入:s = "226"
输出:3
解释:它可以解码为 "BZ" (2 26), "VF" (22 6), 或者 "BBF" (2 2 6) 。
示例 3:
输入:s = "0"
输出:0
解释:没有字符映射到以 0 开头的数字。
含有 0 的有效映射是 'J' -> "10" 和 'T'-> "20" 。
由于没有字符,因此没有有效的方法对此进行解码,因为所有数字都需要映射。
提示:
1 <= s.length <= 100
s 只包含数字,并且可能包含前导零。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/decode-ways
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
对于这道题,其实我一开始打算用递归来做,不过超时了。。。。
class Solution {
String s;
int len;
public int numDecodings(String s) {
if(s.equals("0")||s.equals("00")) return 0;
this.s=s;
int len=s.length();
this.len=len;
int ans=process(s,0);
return ans;
}
public int process(String s,int i){
if(i==len){
return 1;
}
if(s.charAt(i)=='0'){
return 0;
}else if(s.charAt(i)=='1'){
int res=process(s,i+1);
if(i+1<len){
res+=process(s,i+2);
}
return res;
}else if(s.charAt(i)=='2'){
int res=process(s,i+1);
if(i+1<len&&(s.charAt(i+1)>=0&&s.charAt(i+1)<='6')){
res+=process(s,i+2);
}
return res;
}else return process(s,i+1);
}
}
还是得用动态规划来做。。。。
class Solution {
public:
int numDecodings(string s) {
int n=s.size();
vector<int> f(n+1);
f[0]=1;
for (int i=1;i<=n;++i) {
if(s[i-1]!='0'){
f[i]+=f[i-1];
}
if(i>1&&s[i-2]!='0'&&((s[i-2]-'0')*10+(s[i-1]-'0')<=26)){
f[i]+=f[i-2];
}
}
return f[n];
}
};
很简单的状态转移方程:
f(i)=f(i-1)+f(i-2)
不过要加上一些边界条件。