[bzoj4543] [POI2014]Hotel加强版

题目大意

给定一棵树,n个节点,问有多少个三元组(x,y,z)(x < y < z),满足这三个点在树上距离两两相等。
n≤100000

分析

你可以想到一个n方的dp:设f[i][j]表示i为根的子树中,与i距离为j的节点有多少个。g[i][j]表示i为根的子树中,有多少个二元组(x,y)(x < y)满足:设d表示它们到lca的距离都为d,它们的lca到i的距离为d-j。
那么做到i节点时,先递归完每个儿子,然后合并每个子树。每次合并的时候,答案三元组中有1个、2个节点在当前被合并的子树中的答案加到总答案里、把g[x][1]加到总答案里,然后更新f和g。

如何跑过100000的数据呢?

考虑长链剖分。遍历完最深的子树后,用指针(我用数组模拟链表)操作O(1)复制该子树的f,g数组。然后再合并其它儿子,这时暴力合并。这样的复杂度是 ii 。总复杂度是O(n)的

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=1e5+5,M=N*2;

typedef long long LL;

int n,tot,h[N],e[M],nxt[M],dep[N],mx[N],pf[M],pg[M],nf[M],ng[M],hf[N],hg[N],ef[N],eg[N],sf,sg;

LL f[M],g[M];

LL ans;

char c;

int read()
{
    int x=0,sig=1;
    for (c=getchar();c<'0' || c>'9';c=getchar()) if (c=='-') sig=-1;
    for (;c>='0' && c<='9';c=getchar()) x=x*10+c-48;
    return x*sig;
}

void Add(int x,int y)
{
    e[++tot]=y; nxt[tot]=h[x]; h[x]=tot;
}

void Init(int x,int y)
{
    mx[x]=dep[x]=dep[y]+1;
    for (int i=h[x];i;i=nxt[i]) if (e[i]!=y)
    {
        Init(e[i],x); mx[x]=max(mx[x],mx[e[i]]);
    }
}

void dfs(int x,int y)
{
    int t=0,i;
    for (i=h[x];i;i=nxt[i]) if (e[i]!=y && (!t || mx[t]<mx[e[i]])) t=e[i];
    if (!t)
    {
        ef[x]=hf[x]=++sf; eg[x]=hg[x]=++sg; f[sf]=1; return;
    }
    dfs(t,x);
    hf[x]=hf[t]; hg[x]=hg[t]; ef[x]=ef[t]; eg[x]=eg[t];
    pf[hf[x]]=++sf; nf[sf]=hf[x]; f[sf]=1; hf[x]=sf;
    ng[eg[x]]=++sg; pg[sg]=eg[x]; eg[x]=sg; ng[eg[x]]=++sg; pg[sg]=eg[x]; eg[x]=sg;
    hg[x]=ng[hg[x]]; pg[hg[x]]=0;
    ans+=g[hg[x]];
    int xf,xg,yf,yg;
    for (i=h[x];i;i=nxt[i]) if (e[i]!=y && e[i]!=t)
    {
        dfs(e[i],x);
        for (xf=hf[x],xg=hg[x],yf=hf[e[i]],yg=hg[e[i]];yf>0 && yg>0;xf=nf[xf],yf=nf[yf],xg=ng[xg],yg=ng[yg])
        {
            if (pf[xf]>0) ans+=f[pf[xf]]*g[yg];
            if (ng[xg]>0) ans+=g[ng[xg]]*f[yf];
        }
        for (xf=hf[x],xg=hg[x],yf=hf[e[i]],yg=hg[e[i]];yf>0 && yg>0;xf=nf[xf],yf=nf[yf],xg=ng[xg],yg=ng[yg])
        {
            if (pg[xg]>0) g[pg[xg]]+=g[yg];
            if (ng[xg]>0) g[ng[xg]]+=f[nf[xf]]*f[yf];
            if (nf[xf]>0) f[nf[xf]]+=f[yf];
        }
    }
}

int main()
{
    n=read();
    for (int i=1;i<n;i++)
    {
        int x=read(),y=read();
        Add(x,y); Add(y,x);
    }
    Init(1,0);
    dfs(1,0);
    printf("%lld\n",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值