数据驱动建模
文章平均质量分 86
普通网友
这个作者很懒,什么都没留下…
展开
-
预训练大模型在新冠药物研发中崭露头角——首届全球AI药物研发算法大赛基线模型详解
首届全球AI药物研发算法大赛,是由清华大学药学院、百度飞桨、百度智能云和临港实验室共同主办,并得到中国药学会等单位大力支持的一项全球性技术创新大赛,旨在借助百度飞桨在生物计算方向上的算法优势,通过AI Studio平台,探索AI+药学领域前沿技术,挖掘和培育优秀人才,诚邀全球范围内生物计算、人工智能等相关专业的高校师生、企业、科研机构及开发者参赛。参赛者可以利用深度学习、分子对接等方法,预测和评估小分子与主蛋白酶之间的相互作用,以及小分子在细胞中抑制病毒复制的潜力,挖掘潜在的药物候选物。原创 2023-06-23 16:22:49 · 756 阅读 · 3 评论 -
零基础机器学习--自动化库Pycaret快速入门指南之回归任务
PyCaret的回归模块是一个有监督的机器学习模块,用于估计因变量(通常称为 "结果变量",或 "目标")和一个或多个自变量(通常称为 "特征","预测因素",或 "协变量")之间的关系。如果所有的数据类型都是正确的,你可以按回车键,或者键入退出退出设置。这个函数使用交叉验证法对模型库中所有可用的估计器的性能进行训练和评估。PyCaret是一个代码量超低的机器学习库,它有效的自动化了机器学习工作流。要在未见过的(新)数据集上生成标签,只需在predict_model函数中传递数据集。原创 2023-02-08 21:36:29 · 556 阅读 · 0 评论 -
零基础机器学习--基于Pycaret快速部署分类任务
分类任务一些常见的用例包括预测客户违约(是或不是),预测客户流失(客户将离开或留下),发现的疾病(积极或消极)。Pycaret有超过18种随时可用的算法和并且可以一行代码分析训练好的模型的性能。如果所有的数据类型都是正确的,你可以按回车键,或者输入quit来退出设置。PyCaret是一个代码量超低的机器学习库,它有效的自动化了机器学习工作流。该函数使用训练好的模型预测标签和分数(预测类别的概率)列。原创 2023-02-05 17:13:21 · 288 阅读 · 0 评论 -
自动化深度学习-skorch的基本介绍与安装指南
skorch的目标之一是使PyTorch与sklearn的【联合使用】成为可能。这是通过提供一个具有sklearn接口的PyTorch的包装器来实现的。skorch并没有重新写轮子,而是尽可能地让你摆脱使用Pytorch需要重复编写代码的困境。如果你熟悉sklearn和PyTorch,你不需要学习任何新的概念,而且语法应该是众所周知的,如果你不熟悉这些库,跟随本系列教程,你可以同时精通PyTorch、Sklearn和skorch。此外,skorch抽象出了训练循环,使很多模板代码变得非常简单。原创 2023-01-27 15:47:11 · 1008 阅读 · 0 评论 -
如何测试机器学习模型--Pycaret快速入门指南之聚类任务
Pycaret的聚类模块是一个无监督的机器学习模块,它执行对一组对象进行分组的任务,使得同一组(也称为集群)中的对象彼此之间比其他组中的对象更相似。它提供了几个预处理功能,通过设置功能为建模准备数据。它有超过10个随时可用的算法和多种绘图方法来分析训练模型的性能。原创 2023-01-24 16:06:18 · 449 阅读 · 0 评论 -
基于Pycaret自动化机器学习库的异常检测任务入门方案
PyCaret 的推理算法将根据某些属性自动推断所有特征的数据类型。PyCaret是一个代码量超低的机器学习库,它有效的自动化了机器学习工作流。实现了端到端的机器学习和模型管理工具,可以成倍地加快机器学习的学习、部署和实践速度。本文主要介绍Pycaret的特色、优势和理念,喜欢的朋友请关注本专栏,我的专栏将陆续更新。确保数据类型正确在 PyCaret 中非常重要,因为它会自动执行多个特定于类型的预处理任务,这对于机器学习模型来说是必不可少的。,这篇教程主要关注这个库的一些最简单的使用方式。原创 2023-01-23 17:34:28 · 408 阅读 · 0 评论 -
【数据博彩】如何使用大数据机器学习预测NBA比赛结果?
【重磅】大数据机器学习预测NBA比赛结果独家方案+代码。原创 2023-01-17 12:11:46 · 3755 阅读 · 0 评论 -
【深度学习+】基于卷积和全连接神经网络的主动学习岩土力学模型训练方案(Pytorch框架实现)
监督学习问题中,存在标记成本较为昂贵且标记难以大量获取的问题。针对一些特定任务,只有行业专家才能为样本做上准确标记。在此问题背景下,主动学习(Active Learning, AL)尝试通过选择性的标记较少数据而训练出表现较好的模型。主动学习已经是一个较为成熟的技术,已经有很多研究工作将其应用于不同学科和领域,本文仅从最简单方法出发,作为示例。原创 2023-01-12 18:29:36 · 831 阅读 · 3 评论 -
基于PyCaret和Xgboost的MathorCup B 题机器学习建模方案
本次2022mathorcup数学建模大赛采取中国移动通信集团北京公司数据,要求对于客户语音业务和上网业务分别建立客户打分基于相关影响因素的数学模型,这个方案基于对比20种机器学习模型进行,用于帮助参赛选手选择合适的模型。原创 2023-01-09 15:24:03 · 488 阅读 · 2 评论 -
基于PaddleTS的亚太杯1月场E题第二问方案和代码解析(世界拥核国家数量预测)
使用先进的集成时间序列预测工具Paddle进行建模预测的部分可视化内容和代码解析。PaddleTS 是一款基于飞桨深度学习框架的开源时序建模算法库,其具备统一的时序数据结构、全面的基础模型功能、丰富的数据处理和分析算子以及领先的深度时序算法,可以帮助开发者实现时序数据处理、分析、建模、预测全流程,在预测性维护、智慧能耗分析、价格销量预估等场景中有重要应用价值。原创 2023-01-07 16:45:53 · 577 阅读 · 3 评论 -
天池“英特尔创新大师杯”深度学习挑战赛 第15名方案【自然语言处理方向】
【天池大赛】阿里达摩院机器智能技术团队联合CCKS2021大会举办此次地址评测任务。这篇文章使用Bert模型进行训练和推理,为参加此次比赛的朋友提供参考。原创 2023-01-05 22:23:37 · 552 阅读 · 0 评论 -
基于AAARR模型的游戏商业分析(附带模型代码)
希望通过对玩家在游戏前7天的行为数据的分析,了解玩家的在线情况、常见的支付指标以及现金道具的消耗情况。(2) 控制产品的总体成本/收益关系,用户生命周期价值(LTV)远远大于用户获取成本(CAC),这意味着产品运营的成功。它指的是获取用户、增加活动、提高留存率、获得收入和病毒传播。有必要找到游戏行为和支付率(PR)的谷来提高PR。(1) 以用户为中心,以完整的用户生命周期为线索。用户支付率PR:3.26%(高于平均1.74%)从活化到保留的转化率:25.01%(较低)从保留金到付款的转换率:13.04%原创 2023-01-05 15:08:06 · 431 阅读 · 0 评论 -
PyCaret:低代码自动化的机器学习工具
随着ChatGPT和AI画图的大火,机器学习作为实现人工智能的底层技术被大众越来越多的认知,基于机器学习的产品也越来越多。传统的机器学习实现方法需要较强的编程能力和数据科学基础,这使得想零基础尝试机器学习变得非常困难。机器学习、深度学习和人工智能(AI)的关系PyCaret是 Python 中的开源低代码机器学习库,可自动执行机器学习工作流程。它是一种端到端的机器学习和模型管理工具,可以成倍地加快实验周期并提高您的工作效率。原创 2023-01-03 22:06:52 · 690 阅读 · 0 评论 -
百度吃鸡排名预测挑战赛第六名方案(基于PyCaret)
笔者参加百度吃鸡排名预测挑战赛位列第六名,现将方案给出供大家参考,如有想上车参赛的同学请在评论区留言。原创 2023-01-02 21:03:58 · 787 阅读 · 0 评论 -
百度网盘AI大赛表格结构检测第七名方案(基于PaddleDetection的尝试)
笔者参加百度网盘AI大赛表格结构检测目前位列第七名,现将方案给出,供同样参赛的朋友参考,也欢迎想要组队的伙伴联系。原创 2023-01-02 19:04:10 · 468 阅读 · 6 评论