引言
这篇文章主要记录俺所作的计算生物学工具-基于SMILES表示法的高效大规模药物对接筛选打分器,以下简称SMILESDOCKING。这个工具可以进行大规模的药物分子-靶标多筛选,也可以为AIDD(基于人工智能的药物设计)提供参考特征。
SMILES表示
SMILES表示法是一种简洁的化学符号表示法,能够将化学结构转化成ASCII字符串。令人惊叹的是,通过这种简洁的表示法,我们能够轻松地将复杂的分子结构用一串字符来表达。这是一种简洁、高效且极具创新性的方式。利用这种方式表征药物小分子可以从中药代谢组、天然物质库等获取药物信息,然后生成三维结构,从而开展基于结构的药物-靶标相互作用预测。SMILES符号是“线性符号”之一,用于用单行文本表达化合物的结构。它是由David Weininger于1986年采用的,由Daylight Chemical Information Systems开发并共同创建。由于其简单性,它是使用最广泛的线性符号。
AIDD与SMILES
让我们来看看AIDD如何利用SMILES打开药物研发的新大门。当我们在对接和筛选大量药物分子时,我们需要一种快速且精确的方法来评估它们与目标蛋白的亲和力。这是一个极具挑战性的问题,因为我们要处理的数据量是巨大的。在这里,SMILES表示法的优势就显现出来了。通过将分子结构转化为简洁的字符串,我们可以大大减少数据的复杂性。
药物研发是一个漫长且昂贵的过程,通常需要数年时间和数亿美元的投入。通过使用大规模药物筛选,我们可以在很短的时间内快速筛选出有潜力的候选药物,并专注于那些最有可能成功的方案。这不仅可以节省时间和金钱,而且可以加速药物的研发进程,为全人类带来福音。