1、归并排序:
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。值得注意的是归并排序是一种稳定的排序方法。
2、归并过程为:
比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1,如此循环下去,知道其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。
3、归并操作的工作原理如下:
第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列。
第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置。
第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置。
重复步骤3直到某一指针超出序列尾。
将另一序列剩下的所有元素直接复制到合并序列尾。
4、C++代码实现:
void Merge(int array[] , int low , int mid , int high)
{
int i , j , k;
int *temp = (int *)malloc((high - low + 1)*sizeof(int));
i = low , j = mid + 1 , k = 0;
while(i <= mid && j <= high)
{
if(array[i] < array[j]) // 进行排序存入动态分配的数组中
temp[k++] = array[i++];
else
temp[k++] = array[j++];
}
while(i <= mid) // 如果前一半中还有未处理完的数据,按顺序移入动态分配的数组内
temp[k++] = array[i++];
while(j <= high) // 如果前一半中还有未处理完的数据,按顺序移入动态分配的数组内
temp[k++] = array[j++];
for(i = low , j = 0; i<= high ; ++i)
array[i] = temp[j++];
free(temp);
}
void Msort(int array[] , int low , int high)
{
int mid;
if(low < high)
{
mid = (low + high)>>1;
Msort(array , low , mid);
Msort(array , mid + 1 , high);
Merge(array , low , mid , high);
}
}