经典noip石子合并问题

博客探讨了南开OJ 1137题目的石子合并问题,强调了重量与分数概念的区分。文章通过状态转移方程解释了解题思路,展示了如何从a[1,4]出发计算最优得分,并提到可以进一步优化到O(n^2)或O(logn)的时间复杂度。博主计划深入学习STL库和动态规划。" 124239528,12152268,第八章:植物生理学英文词汇解析,"['学习', '生物学', '植物学', '词汇', '科学教育']
摘要由CSDN通过智能技术生成

石子合并问题(南开oj 1137)

在一个圆形操场的四周摆放着n 堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。

编程任务:

对于给定n堆石子,编程计算合并成一堆的最小得分和最大得分。

Input
输入包括多组测试数据,每组测试数据包括两行。
第1 行是正整数n,1<=n<=100,表示有n堆石子。
第2行有n个数,分别表示每堆石子的个数。

Output
对于每组输入数据,输出两行。
第1 行中的数是最小得分;第2 行中的数是最大得分。

Sample Input
4

4 4 5 9

Sample Output

43

54


#include <iostream>
#include <string>
using namespace std;

int main()
{
	int n,a[100][100],b[100][100],sum[100][100]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值