环境
硬件
8 个 NVIDIA Tesla V100 GPUs
Intel Xeon 4114 CPU @ 2.20GHz
软件环境
Python 3.6 / 3.7
PyTorch 1.1
CUDA 9.0.176
CUDNN 7.0.4
NCCL 2.1.15
镜像站点
我们使用AWS作为托管model zoo的主要站点,并在阿里云上维护镜像。你可以在模型网址中把https://s3.ap-northeast-2.amazonaws.com/open-mmlab替换为https://open-mmlab.oss-cn-beijing.aliyuncs.com。
常用设置
所有FPN基准和RPN-C4基准均使用8个GPU进行训练,批处理大小为16(每个GPU 2张图像)。其他C4基线使用8个批处理大小为8的GPU进行了训练(每个GPU 1张图像)。
所有模型都在
coco_2017_train
上训练以及在coco_2017_val
测试。我们使用分布式训练,并且BN层统计信息是固定的。
我们采用与Detectron相同的训练时间表。1x表示12个epoch,而2x表示24个epoch,这比Detectron的迭代次数略少,并且可以忽略不计。
ImageNet上所有pytorch样式的预训练主干都来自PyTorchmodel zoo。
为了与其他代码库进行公平比较,我们将GPU内存报告
torch.cuda.max_memory_allocated()
为所有8个GPU 的最大值。请注意,此值通常小于nvidia-smi
显示的值。我们将推理时间报告为总体时间,包括数据加载,网络转发和后处理。
基线
具有不同主干的更多模型将添加到model zoo。
基线
具有不同主干的更多模型将添加到model zoo。