【目标检测】MMDetection专栏之基准测试 和 Model Zoo|三

环境
硬件
  • 8 个 NVIDIA Tesla V100 GPUs

  • Intel Xeon 4114 CPU @ 2.20GHz

软件环境
  • Python 3.6 / 3.7

  • PyTorch 1.1

  • CUDA 9.0.176

  • CUDNN 7.0.4

  • NCCL 2.1.15

镜像站点

我们使用AWS作为托管model zoo的主要站点,并在阿里云上维护镜像。你可以在模型网址中把https://s3.ap-northeast-2.amazonaws.com/open-mmlab替换为https://open-mmlab.oss-cn-beijing.aliyuncs.com。

常用设置
  • 所有FPN基准和RPN-C4基准均使用8个GPU进行训练,批处理大小为16(每个GPU 2张图像)。其他C4基线使用8个批处理大小为8的GPU进行了训练(每个GPU 1张图像)。

  • 所有模型都在coco_2017_train上训练以及在coco_2017_val测试。

  • 我们使用分布式训练,并且BN层统计信息是固定的。

  • 我们采用与Detectron相同的训练时间表。1x表示12个epoch,而2x表示24个epoch,这比Detectron的迭代次数略少,并且可以忽略不计。

  • ImageNet上所有pytorch样式的预训练主干都来自PyTorchmodel zoo。

  • 为了与其他代码库进行公平比较,我们将GPU内存报告 torch.cuda.max_memory_allocated()为所有8个GPU 的最大值。请注意,此值通常小于nvidia-smi显示的值。

  • 我们将推理时间报告为总体时间,包括数据加载,网络转发和后处理。

基线

具有不同主干的更多模型将添加到model zoo。

基线

具有不同主干的更多模型将添加到model zoo。

RPN

访问文末【原文链接】即可下载表格中的model列模型权重
Faster R-CNN

访问文末【原文链接】即可下载表格中的model列模型权重
Mask R-CNN

访问文末【原文链接】即可下载表格中的model列模型权重
Fast R-CNN (有预先计算的proposals)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值