- 博客(67)
- 收藏
- 关注
原创 模型分词对比jieba_thulac_SnowNLP
(3.1)snownlp:Simplified Chinese Text Processing 简体中文文本处理1 地址:https://pypi.org/project/snownlp/;2 参考:[TextBlob](https://github.com/sloria/TextBlob)
2024-11-11 13:15:33 587
原创 OCR模型调研及详细安装
1 EasyOCR: 基于 PyTorch 的 OCR 库,支持多种语言,包括中文。它使用深度学习模型,提供简单的 API,适合快速集成。 结论:准确率高(开源中文语言模型),效率略低,采用GPU推理效率会快。2 Tesseract-OCR: 开源的 OCR 引擎,最初由惠普开发,后来被 Google 维护。它支持多种语言,具有较高的识别准确率,适合处理各种文档和手写体。3 PaddleOCR: 部署繁琐,准确率较高。PaddleOCR 是由百度开发的 OCR 工具,支持多种语言和场景,具有较高
2024-10-08 20:30:00 518
原创 Conda新建python虚拟环境问题
defaults::vs2015_runtime-14.40.33807-h.Rolling back transaction: done[Errno 13] Permission denied: 'D:\\ProgramFiles\\miniconda3\\envs\\yolov8\\Library\\bin\\ucrtbase.dll'
2024-09-20 18:15:00 557
原创 目标检测算法与应用算法 DS集成 接口相关_v0.1
输出:当前帧图像的目标信息。输出:当前帧图像的目标信息。输出:当前帧图像的目标信息。输出:当前帧图像的目标信息。输出:当前帧图像的目标信息。输入: 一帧图像的Mat信息 和 每帧的目标信息。输入:每帧的目标信息 和 如下结构体的标定信息。输入:每帧的目标信息 和 如下结构体的标定信息。输入:每帧的目标信息 和 如下结构体的标定信息。输入:每帧的目标信息 和 如下结构体的标定信息。输入:每帧的目标信息 和 如下结构体的标定信息。输入:每帧的目标信息 和 如下结构体的标定信息。
2024-07-18 18:43:10 1207
原创 torch/lib/libtorch_python.so: undefined symbol: _ZN3c1019ConstantSymNodeImplIlE2eqERKNS
torch/lib/libtorch_python.so: undefined symbol: _ZN3c1019ConstantSymNodeImplIlE2eqERKNS
2024-05-30 16:05:47 754
原创 RuntimeError: CUDA error: device-side assert triggered
RuntimeError: CUDA error: device-side assert triggeredCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.For debugging consider passing CUDA_LAUNCH_BLOCKING=1.Compile with `TORCH_USE_CU
2024-05-27 18:02:52 568
原创 YOLOv5模型训练时,AttributeError module ‘wandb.proto.wandb_internal_pb2‘ has no attribute ‘Result‘
训练时main函数最前面增加。
2024-05-13 15:57:55 1015
原创 现有车牌识别项目对比调研及优缺点总结
车牌识别项目现存难点:① 车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来。② 车牌在图像中的尺度差异,不同车辆的悬挂位置差异。③ 车辆图像质量、车牌角度、运动速度导致的车牌模糊和脏污导致的车牌模糊,光照不足或过曝等问题。④ 部署场景对模型大小和推理速度的限制。
2024-04-15 11:21:45 1237
原创 YOLOv8模型部署
YOLOv8模型部署 (针对道路交通采用多样化场景数据训练的模型 来测试新的场景)包含yolov8导出onnx【input shape (1, 3, 960, 544) BCHW ,output shape(s) (1, 10710, 15)】包含使用trtexec生成engine文件
2024-02-20 18:03:22 841
原创 针对某道路交通场景目标检测模型YOLOv8s和YOLOv8n检测测试结果分析——针对YOLOv8s模型设置不同confThred和iouThred对检测结果的影响及分析
——针对YOLOv8s模型设置不同confThred和iouThred对检测结果的影响及分析
2024-02-20 15:48:35 1020
原创 YOLO框架下(ultralytics) RTDETE 与 YOLOv8 目标检测对比
1 RTDETR的召回相对较高,缺点:存在过检现象(背景或车上的货物识别为目标),优点:一些被遮挡或边角的目标能够比v8正确检出。2 存在目标RTDETR漏检,但v8正确检出。有时候v8也会过检,但概率较低。3 存在目标RTDETR误检,v8正确检出/由于遮挡漏检。4 当前训练是2700+数据训练的模型,本人认为尽管存在上述2、3所提问题,但RTDETR的过检应该可以通过conf过滤,而部分误检现象通过增大数据集应该可以改善,但2、3同时也说明,相对来说,v8可以用较少的数据训出较好的模
2024-02-01 10:46:31 1522
原创 3D点云数据的标定,从搭建环境到点云标定方法及过程,只要有一台Windows笔记本,让你学会点云标定
3D点云数据的标定,从搭建环境到点云标定方法及过程,只要有一台Windows笔记本,让你学会点云标定
2024-01-25 20:00:00 1914 7
原创 目前目标跟踪算法研究202308
我的总结:因为原论文本身是针对行人重识别的,而且作者在设计的时候,考虑到类内特征差异大,类间特征差异小的特点(例如,一个人背着包包前后拍到的差异大,不同人穿类似衣服,差异小),作者提出了通过联合聚合门(统一聚合门)生成的通道权重将不同尺度的信息动态融合,即做了全尺度的特征表示。 我们应用在车路协同场景下,目标追踪类型包含了机动车、非机动车和行人。机动车的类内差异主要体现在由于拍摄角度带来的形态差异。多目标类型的类间差异体现在机动车和非机动车及行人之间的差异较大。
2024-01-14 15:15:56 1500
原创 雷达点云数据处理:pcd数据融合,转为bin格式,sustech环境下标注目标
雷达点云数据处理:pcd数据融合,转为bin格式,sustech环境下标注目标
2024-01-12 18:39:24 909
原创 MMDETECTION3D 使用kitti格式的数据集跑centerpoint模型
MMDETECTION3D 使用kitti格式的数据集跑centerpoint模型
2024-01-05 15:37:59 1532 1
原创 Paddle3D 2 雷达点云CenterPoint模型训练
点云的标签文件single-infrastructure-side\label\virtuallidar*.json转为txt文件存储,这里3Class,故只取类型([“Car”, “Cyclist”, “Pedestrian”])([‘Cyclist’, ‘Car’, ‘Truck’])。从原文件里面相同名称的图片复制过来就可以了,这里原图片文件是.jpg的格式,kitti里面查找.png的格式好像是写死的,为避免麻烦,可以先把图片直接重命名为.png的格式。
2024-01-03 22:00:00 1749
原创 Paddle3D 1 环境安装—— 包含ExternalError: CUBLAS error(7)解决办法
Paddle3D 环境安装—— 包含ExternalError: CUBLAS error(7)解决办法
2023-12-19 22:15:00 1681
原创 MMDetection3D雷达点云数据训练框架
MMDetection3D 支持任务:点云 3D 检测、单目 3D 检测、多模态 3D 检测和点云 3D 语义分割等。3D 目标检测按照输入数据模态划分可以分为:① 点云 3D 检测② 纯视觉 3D 检测③ 多模态 3D 检测(点云+图片)。
2023-12-08 16:43:02 1623
原创 雷达点云数据.pcd格式转.bin格式
注意,方法1原则上可行,但是本人没整好pypcd的环境方法2是利用open3d的环境,基于python3.7绝对可以的
2023-12-08 15:04:02 1094
原创 MMDetection3D :openmmlab环境搭建及模拟kitti数据集跑pointpillars模型
openmmlab环境搭建及模拟kitti数据集跑pointpillars模型
2023-12-04 10:08:02 3349 29
原创 跨镜头目标融合__追踪之目标重识别研究(跨镜头目标追踪)
也可以使用自定义的Re-ID模型。只要它是UFF格式,并且每个对象的网络输出是L2范数的单个向量。然后基于余弦度量计算Re-ID相似性得分,并以与官方模型相同的方式用于执行数据关联。1. 使用TensorFlow或PyTorch等深度学习框架训练Re-ID网络。2. 确保TensorRT支持网络层,并将模型转换为UFF格式。仍然支持混合精度推理,并且INT8模式需要校准缓存。3. 根据自定义模型的属性,在跟踪器配置文件中指定以下参数。然后使用新的Re-ID模型运行DeepStream SDK。
2023-11-11 16:09:34 1578
原创 8月AI实战:工业视觉缺陷检测
8月AI实战:工业视觉缺陷检测--基于tflite的yolov8模型优化和推理操作视频见B站连接:aidlux模型优化+工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理[bilibiliaidlux模型优化+工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理](
2023-09-08 16:03:52 299
原创 从0开始 yolov5可以用灰度图像进行训练和检测吗
通常我们采用RGB图像做目标检测,考虑多路视频流同时做目标检测时,消耗显卡算力和推理时间较多。现通过实验对比对灰度图(GRAY)和RGB图做训练和测试对比。
2023-09-05 15:42:10 5799 15
原创 从0开始做yolov5模型剪枝
整个流程中,在正常train,sparityTrain,prune,finetune遇到10多个的问题,包括AttributeError、ModuleNotFoundError、RuntimeError、SyntaxError、TypeError等问题的解决方法,详见内容
2023-08-25 17:45:57 2528 8
原创 显卡nvidia-smi后 提示Faild 解决过程,包含卸载重装NVIDIA驱动步骤
Unable to determine the device handle for GPU 8000:01:00.0: Unknown Errorreboot机器后,又输出如下,记为【Error2】NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed
2023-08-15 19:55:01 2197
原创 ubuntu 使用Python代码监控GPU和CPU的用量及温度
项目中,由于发现存在程序怪掉起不来,检查发现是输入命令nvidia-smi后,不打印NVIDIA显卡的驱动信息。
2023-08-04 14:29:19 712
原创 ByteTrack算法原理及流程
(3.1)先与(2.3)中剩的轨迹关联。 (2.1)使用当前帧的检测框和上一帧的卡尔曼滤波预测(或估计)结果,使用IOU计算相似度(或者如果有用ReID的话,会计算特征间距离计算相似度)。1 对当前帧中(置信度高于最低阈值的)所有检测框,根据置信度中间阈值分成 高置信度检测框 和 低置信度检测框。 (2.3)要保留未匹配到轨迹的高置信度检测框(即当前帧剩的检测框) 和 未匹配到检测框的上一帧存在的轨迹(即上一帧剩的轨迹)。 (3.3)删除在(3.1)中未匹配到轨迹的低置信度的检测框。
2023-07-27 19:15:00 1001 1
原创 YOLOv5 YOLOv7 YOLOv8的模型测试对比和结论
基于使用自己训练的模型,yolov8做推理测试的时候postprocess时间大于inference时间_故做此研究。在val和predict速度栏,刚开始发现Yolov8的postprocess时长达到了16ms+。
2023-07-21 15:01:12 2130 3
原创 yolo系列不同模型训练的时候 数据集标注文件之间的相互转换
yolo系列不同模型训练的时候 数据集标注文件之间的相互转换一 将标注精灵标注的json文件转换为yolov5训练所需的txt格式,需依次遍历每一个json二 将yolov5的txt格式转化为yolovX的xml,需依次遍历每一个txt文件。三 将yolo格式的标注文件.txt转换为coco格式的标注文件.json四 写入txt文件 分别存放训练集和验证集图片的路径
2023-07-20 15:28:53 582
原创 视频目标检测 yolo算法小模型自训练模型对比(yolov5 yolov7 yolov8)
Yolo系列模型训练结果及测试结果对比:yolov5 yoloX yolov7 yolov8各个yolo系列版本对应小模型训练及测试对比原理测试结果 对比
2023-07-19 20:34:13 7653 7
原创 一种通过标定像素点和其对应经纬度值 构成映射,来计算视频图像内目标经纬度的方法
根据标定点计算R_t矩阵_单应性矩阵方法一种通过标定像素点和其对应经纬度值 构成映射,来计算视频图像内目标经纬度的方法。
2023-07-04 01:00:00 755 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人