链接:https://www.zhihu.com/question/33272629
编辑:深度学习与计算机视觉
声明:仅做学术分享,侵删
有基本的图像处理和计算机视觉的课程基础(修过数字图像处理、矩阵分析、机器学习、计算机视觉、模式识别、小波分析、最优化算法等课程),对行为识别领域感兴趣,不知道知乎的大神们是否能推荐几篇值得开始研读的行为识别领域的论文?有了开端,就可以沿着参考文献一直读下去仔细研究了。但是现在对该领域还不了解,不知道从哪些论文开始着手比较好?
作者:Xiaolong Wang
https://www.zhihu.com/question/33272629/answer/60279003
有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门弄斧说下video里主流的:
Deep Learning之前最work的是INRIA组的Improved Dense Trajectories(IDT) + fisher vector, paper and code:
LEAR - Improved Trajectories Video Description:https://lear.inrialpes.fr/people/wang/improved_trajectories
基本上INRIA的东西都挺work 恩..
然后Deep Learning比较有代表性的就是VGG组的2-stream:
http://arxiv.org/abs/1406.2199
其实效果和IDT并没有太大区别,里面的结果被很多人吐槽难复现,我自己也试了一段时间才有个差不多的数字。
然后就是在这两个work上面就有很多改进的方法,目前的state-of-the-art也是很直观可以想到的是xiaoou组的IDT+2-stream:
http://wanglimin.github.io/papers/WangQT_CVPR15.pdf
还有前段时间很火,现在仍然很多人关注的G社的LSTM+2-stream:
http://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/43793.pdf
然后安利下zhongwen同学的paper:
http://www.cs.cmu.edu/~zhongwen/pdf/MED_CNN.pdf
最后你会发现paper都必需和IDT比,然后很多还会把自己的method和IDT combine一下说有提高 恩..
作者:水哥
https://www.zhihu.com/question/33272629/answer/60163859
视频方面的不了解,可以聊一聊静态图像下的~
[1] Action Recognition from a Distributed Representation of Pose and Appearance, CVPR,2010
[2]Combining Randomization and Discrimination for Fine-Grained Image Categorization, CVPR,2011
[3] Object and Action Classification with Latent Variables, BMVC, 2011
[4] Human Action Recognition by Learning Bases of Action Attributes and Parts, ICCV, 2011
[5] Learning person-object interactions for action recognition in still images, NIPS, 2011
[6] Weakly Supervised Learning of Interactions between Humans and Objects, PAMI, 2012
[7] Discriminative Spatial Saliency for Image Classification, CVPR, 2012
[8] Expanded Parts Model for Human Attribute and Action Recognition in Still Images, CVPR, 2013
[9] Coloring Action Recognition in Still Images, IJCV, 2013
[10] Semantic Pyramids for Gender and Action Recognition, TIP, 2014
[11] Actions and Attributes from Wholes and Parts, arXiv, 2015
[12] Contextual Action Recognition with R*CNN, arXiv, 2015
[13] Recognizing Actions Through Action-Specific Person Detection, TIP, 2015
2010之前的都没看过,在10年左右的这几年(11,12)主要的思路有3种:
1.以所交互的物体为线索(person-object interaction),建立交互关系,如文献5,6;
2.建立关于姿态(pose)的模型,通过统计姿态(或者更广泛的,部件)的分布来进行分类,如文献1,4,还有个poselet上面好像没列出来,那个用的还比较多;
3.寻找具有鉴别力的区域(discriminative),抑制那些meaningless 的区域,如文献2,7。10和11也用到了这种思想。
文献9,10都利用了SIFT以外的一种特征:color name,并且描述了在动作分类中如何融合多种不同的特征。
文献12探讨如何结合上下文(因为在动作分类中会给出人的bounding box)。
比较新的工作都用CNN特征替换了SIFT特征(文献11,12,13),结果上来说12是最新的。
静态图像中以分类为主,检测的工作出现的不是很多,文献4,13中都有关于检测的工作。可能在2015之前分类的结果还不够promising。现在PASCAL VOC 2012上分类mAP已经到了89%,以后的注意力可能会更多地转向检测。
视频的个别看过几篇,与静态图像相比,个人感觉最大的区别在于特征不同。到了中层以后,该怎么做剩下的处理,思路还是差的不远。
作者:木比白
https://www.zhihu.com/question/33272629/answer/231800319
今天调研了CVPR2017的论文,对2维图像的视频流(非骨架结构)、深度学习方法的行为识别论文进行了调研。可以从这方面入手去阅读,在Related Work中找前人工作去学习。
1、Deep Temporal Linear Encoding Networks该论文是对two-stream ConvNets的一种补充与改进。
2、Spatiotemporal Multiplier Networks for Video Action Recognition
3、Spatiotemporal Pyramid Network for Video Action Recognition
4、Spatio-Temporal Vector of Locally Max Pooled Features for Action Recognition in Videos
5、Asynchronous Temporal Fields for Action Recognition
6、AdaScan:Adaptive Scan Pooling in Deep Convolutional Neural Networks for Human Action Recognition in Videos
从最新的文章读,读不懂就看related work,毕竟是从前人工作的基础上进行改进和创新。
☆ END ☆
如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「 mthler」,每日朋友圈更新一篇高质量博文。
↓扫描二维码添加小编↓