你想创建一个应用程序来检测一些东西吗?猫和狗,检测水果的成熟程度,在图片中找到品牌?
如果你的答案是需要,那么这篇文章就是为你准备的!
将向你展示如何为你的探测器创建一个应用程序,并把它放到互联网上,让每个人都能看到。
最后,你将有类似这样的东西向你的同事和朋友展示:https://huggingface.co/spaces/Kili/plastic_in_river
你将能够上传一个测试图像,模型将返回预测框和标签。
免责声明:你需要在你的电脑中安装git才能将文件上传到HuggingFace Spaces。如果你没有,不要担心!安装起来很容易。遵循这个教程:https://git-scm.com/downloads
这将是项目的工作流程:

首先,你必须为你的项目收集图像。你想从长颈鹿中发现斑马吗?首先需要获取这两种动物的图像。无论你想检测什么,你都需要它的图像。这个点在工作流程中是白色的,这意味着你必须在你的计算机中完成工作。
标签图像在工作流中显示为蓝色,这是因为你将使用Datature的标签工具。Datature是一家专门为数据标签和模型训练构建用户友好工具的公司。
你还将使用Datature来训练模型。
一旦模型训练好了,你就把它下载到你的电脑上,把所有的文件放在一起(这些文件我会提供给你)
当所有文件放在一起时,你将把它们上传到HuggingFace Spaces,你的模型就可以使用了!
1.找到图片
在计算机视觉项目中,我们需要做的第一件事是收集图像。如果我们想要训练一个深度神经网络,我们需要成千上万张图像。
幸运的是,Datature使用非常先进的模型,而且可能是预训练的,这意味着如果我们从头开始训练模型,我们只需要需要的一小部分图像。
每个类大约有100个图像就足够了。例如,如果你想要检测t恤和裤子,你将需要100个t恤和100个裤子的图像。当然,这个例子也适用于其他情况。例如,你可以有100张猫和狗的图片,所以你可以有100张猫的例子,也可以有100张狗的例子。
如果有类不平衡是可以的,例如如果你的项目检测晴天和阴天,你可以有120张晴天的图片和100张阴天的图片。大约100张就足够了。
收集所有的图像并存储在你的计算机的一个文件夹中。
2.标记图像
在Datature中创建一个帐户,并为你的用例创建一个项目。这个来自Datature团队的教程解释了如何创建项目和标记图像。
https://datature.io/blog/train-and-visualize-face-mask-detection-model
这篇博文详细介绍了如何:
创建Datature Nexus账户(免费试用)
创建一个项目
上传图片
创建类
注释图片
在图像中创建矩形框
为每个框分配一个类
对于每个图像,你将注释一个框(对象在哪里?)和一个类(对象是什么?)
只阅读标签部分,之后,在项目概述中,你应该看到你的图像统计,标签分布等。例如,项目概述应该是这样的: