论文标题: Boosting Novel Category Discovery Over Domains with Soft Contrastive Learning and All in One Classifier
论文链接:https://openaccess.thecvf.com/content/ICCV2023/html/Zang_Boosting_Novel_Category_Discovery_Over_Domains_with_Soft_Contrastive_Learning_ICCV_2023_paper.html
代码:暂未开源
引用:Zang Z, Shang L, Yang S, et al. Boosting Novel Category Discovery Over Domains with Soft Contrastive Learning and All in One Classifier[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 11858-11867.
作者解读:https://zhuanlan.zhihu.com/p/660101925

导读
在无监督域自适应(UDA)中,将知识从标签丰富的源域传输到标签稀缺的目标域已经取得了显著的成果。然而,目标域中可能存在额外的新类别,这促使了开放域适应(ODA)和通用域适应(UNDA)的研究。传统的ODA和UNDA方法将所有新类别视为一个统一的未知类别,并试图在训练过程中检测它们。然而,我们发现域差异会导致无监督数据增强中更显著的视图噪声,这会影响对比学习(CL)的有效性,并使模型对新类别的发现过于自信。
为了解决这些问题,本文提出了一种名为"Soft-contrastive All-in-one Network(SAN)"的框架,用于ODA和UNDA任务。SAN包括一种新颖的基于数据增强的软对比学习(SCL)损失,用于微调骨干网络以进行特征传输,还包括一个更具人类直觉的分类器,以提高新类别的发现能力。
SCL损失减弱了数据增强视图噪声问题的不利影响,这一问题在域迁移任务中被放大。全能分类器(All-in-One,AIO)克服了当前主流的封闭集和开放集分类器的过度自信问题。可视化和消融实验证明了所提创新的有效性。此外,在ODA和UNDA的广泛实验结果显示,SAN优于现有的最先进方法。
本文贡献
ODA 和 UNDA 任务的两个主要目标是特征迁移和新的类别发现。然而,目前的方法在实现这两个目标方面都有局限性,这阻碍了这些任务的进一步改进。具体问题如图1所示

数据增强过程中的视图-噪声问题影响了特征的传递:图1 (a)-top显示了由跨三个不同域的相同数据增强方案生成的视图。内容风格上的差异