今年这个方向在计算机顶会上杀疯了!

随着互联网技术的不断进步,不断有研究者将新的模型和算法应用到计算机视觉领域。计算机视觉所处理的问题越来越丰富,目前主流的计算机视觉任务,主要包括三维重建、目标检测、图像分割、OCR、视频分析和图像生成等。

那么,在CV飞速发展的当下,如何更好地抓住机会,了解热点方向?本次,我复盘并整理了CV领域学习脉络,整理了一份由多位CV领域顶尖导师授课资料包,包含CV时下热点方向24节系列课程、从复现CVPR  best paper开始,手把手教你写一篇CVPR和100+篇顶会论文合集!

限时前200位免费领
加赠导师整理100+CV顶会论文合集

6c5cf02d36f82b445da1de6e8d743c62.png

(下滑有多重超级福利!别错过)

9fdc70292f0160641455fbcb1e7fd5bc.gif

部分论文&授课ppt展示

课程目录

第一节:强化学习与自动驾驶

1.认识强化学习

2.强化学习问题构建

3.自动驾驶决策规划应用

4.学习路径

第二节:图像分类前沿论文带读

1.论文创新点

2.论文代码复现‍‍‍‍

第三节:视觉transformer

1.视觉transformer背景介绍

2.视觉transformer工作原理

3.视觉transformer相关论文解读

第四节:基于深度学习的图像分类

1.图像分类基本概念图像分类常用数据集

2.发展趋势、前沿应用、进阶路线

3.图像分类经典论文解读

第五节:BEV感知之自动驾驶感知算法新范式

1.BEV视角-开启自动驾驶感知新时代

2.自动驾驶-多传感器融合最新研究进展

3.自动驾驶未来研究方向和热点

第六节:高质量的NeRF三维重建

1.Nerf的定义

2.Nerf与高质量图像的联系与任务分类

3.相关代表性论文解读

第七节:AIGC&医学图像的火花

1.大模型时代下的医学图像研究

2.医学AI的未来:通用医学智能

3.前沿论文带读

第八节:一篇CVPR是如何炼成的?

3节课精讲如何高效写一篇CVPR

限时前200位免费领
加赠导师整理100+CV顶会论文合集

72bc8cd5360971a060e2b0676b3eb509.png

(下滑有超级福利!别错过)

fcf137343a33e244d8bb0ab69e7b85cd.jpeg

同时,临近寒假,我们还为各位科研儿免费开设了寒假公益班,从社群答疑、论文写作再到项目实战,带大家逆袭成为计算机大佬!(附赠计算机全领域大礼包)

59f5726dbe42987a524350d6eb7ecfda.jpeg

4175a6f524020e333908023c6d93edab.jpeg

f05d16a3a4d81b047984e61c9a9cab85.jpeg

扫码免费参与(附老师授课PPT)

get社群答疑+课程+项目实战

94e2f10331db2f86c36c9762dbc10754.png

计算机视觉和人工智能的关系:

  • 第一, 它是一个人工智能需要解决的很重要的问题。

  • 第二, 它是目前人工智能的很强的驱动力。因为它有很多应用,很多技术是从计算机视觉诞生出来以后,再反运用到AI领域中去。

  • 第三, 计算机视觉拥有大量的量子AI的应用基础。

3500ffac03d01ee704da33bff70de968.png

计算机视觉在各阶段都取得了一系列令人惊叹的成果,例如:

  • 2012年,AlexNet在ImageNet图像分类竞赛中大放异彩,使用深度卷积神经网络(CNN)打败了其他所有参赛者,将错误率降低了10个百分点。

  • 2014年,GoogleNet和VGGNet在ImageNet图像分类竞赛中再创佳绩,使用更深更复杂的CNN结构进一步提高了分类性能。

  • 2015年,ResNet在ImageNet图像分类竞赛中刷新纪录,使用残差连接(Residual Connection)解决了深度网络训练困难的问题,并将错误率降低到人类水平以下。

  • 2016年,YOLO和SSD在目标检测任务中取得突破,使用单阶段(One-stage)CNN结构实现了快速而准确地检测图像中的多个目标。

  • 2017年,Mask R-CNN在目标分割任务中取得突破,使用两阶段(Two-stage)CNN结构实现了精确地分割图像中的多个目标。

  • 2018年,BERT在自然语言处理任务中取得突破,使用双向(Bidirectional)变压器(Transformer)结构实现了对语言的深层次理解,为图像和文本的联合处理提供了强大的工具。

  • 2019年,AlphaStar在星际争霸II游戏中取得突破,使用强化学习(Reinforcement Learning)和自我博弈(Self-play)的方法训练了一个超越人类顶尖选手的智能体,展示了计算机视觉和决策的高度结合。

  • 2020年,在自然语言生成任务中取得突破,使用1750亿个参数的变压器结构生成了流畅而有逻辑的文本,为图像和文本的互相转换提供了可能。

如果你想要深入学习这个领域,你可以参考以下一些资源:

  • 计算机视觉:一种现代方法》(Computer Vision: A Modern Approach),这是一本经典的计算机视觉教材,涵盖了计算机视觉的基本概念和方法。

  • 深度学习》(Deep Learning),这是一本深度学习的权威教材,介绍了深度学习的理论和实践,以及在计算机视觉中的应用。

  • 图像处理、分析与机器视觉》(Image Processing, Analysis, and Machine Vision),这是一本图像处理的综合教材,介绍了图像处理的基础知识和技术,以及在机器视觉中的应用。

  • 计算机视觉:算法与应用》(Computer Vision: Algorithms and Applications),这是一本计算机视觉的实用教材,介绍了计算机视觉中常用的算法和应用,以及相关的数学原理。

  • 斯坦福大学CS231n:卷积神经网络与视觉识别》(Stanford University CS231n: Convolutional Neural Networks for Visual Recognition),这是一门著名的计算机视觉在线课程,由李飞飞教授等人主讲,介绍了卷积神经网络在计算机视觉中的原理和应用。

限时前200位免费领
加赠导师整理100+CV顶会论文合集

092a56f521a2f1f8e367e4709e3de2a3.png

f13fca9dae6bf930b934f153c7a2f1e0.gif

f8cf33f2da07575fc8fd219855da0a84.png

文末福利

4c426476893eb63c996dc5d1a5426526.png

小沃整理了沃恩智慧联合创始人Paul老师的精品系列付费课程,原价3999元,现0元免费领,包含计算机领域各方向热点内容及论文写作技巧干货!

d1f52b403a0663c118c4e0e47825d371.png

aa06e1039ed9ab7eb7e3a85ddff7296d.jpeg

b428c33277101300543e05d02445e981.png

立即扫码

免费领沃恩智慧创始人精品系列课程

-END-

### 关于《计算机网络自向下方法》第八版的实验资料 对于《计算机网络自向下方法》第八版中的实验部分,该书通常会附带一系列实验室练习来帮助学生更好地理解理论知识并将其应用于实际场景。以下是关于如何获取相关实验资料以及可能涉及的内容概述: #### 获取实验资料的方式 可以通过以下途径查找或获得与《计算机网络自向下方法》第八版相关的实验指导材料: - **官方资源网站**:许多教材都会有一个配套的官方网站,在那里可以找到额外的学习资源,包括实验手册、数据集和其他补充材料[^1]。 - **学校课程页面**:如果你正在参加一门基于这本书讲授的课程,则教授可能会上传特定版本的实验指南到学校的在线学习平台(如Blackboard, Moodle等)上[^3]。 - **图书馆电子书籍服务**:一些大学图书馆提供了访问各种学术出版物的机会,其中包括教科书及其辅助文件。 #### 可能覆盖的主要主题领域 根据以往版本的经验,《计算机网络: 自向下的方法》一书中所设计的实验项目往往围绕以下几个核心方面展开讨论: 1. 应用层协议分析 (Application Layer Protocols Analysis): 学生通过抓包工具Wireshark观察HTTP请求响应过程;构建简单的Web服务器或者代理缓存机制。 2. 传输控制协议TCP/UDP模拟仿真(Transport Control Protocol Simulation & User Datagram Protocol Usage): 使用Python或其他编程语言编写程序演示可靠的数据传递原理。 3. 路由算法研究(Routing Algorithms Research): 利用Mininet创建虚拟网络环境测试不同路由策略的效果比较。 4. 链路状态估计(Link State Estimation): 探讨链路上发生错误时系统的反应行为模式。 5. 安全性考量(Security Considerations): 加密通信基础概念介绍及实践操作说明。 #### 示例代码片段展示 下面给出一段用于实现基本HTTP Web Proxy Server功能的小型脚本作为例子供参考: ```python import socket def start_proxy_server(): # 创建socket对象 server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: # 绑定端口 server_socket.bind(("localhost", 8080)) while True: client_conn, addr = server_socket.accept() request_data = client_conn.recv(4096).decode('utf-8') headers = parse_http_headers(request_data) host_name = get_host_from_header(headers['Host']) remote_sock = create_remote_connection(host_name, 80) send_request(remote_sock, modify_user_agent_in_header(headers)) response = receive_response(remote_sock) forward_to_client(client_conn, response) finally: server_socket.close() if __name__ == "__main__": start_proxy_server() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值