Side window filter

本文介绍了box filter的优化方法,通过特定技巧将复杂度从O(M*N)降低到O(1)。接着,详细阐述了side window filtering的概念,它是如何利用侧窗思想改进滤波器,使其在保持边缘清晰的同时进行滤波。文章还提到了S-BOX,它是box filter与SWF结合的滤波器,并给出了算法流程和MATLAB代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


先介绍了box滤波器,然后介绍了Side window filter,之后介绍了S-BOX。写的很粗略,理解的不是很透彻,具体可以看我的参考内容。

box filter

参考: https://blog.csdn.net/lxy201700/article/details/25104887

(我瞎说的:不要管它的算法,本质上是均值滤波不用求和,通过一定技巧把O(M*N)的复杂度变成O(1))
在这里插入图片描述
1、给定一张图像,宽高为(M,N),确定待求矩形模板的宽高(m,n),如图紫色矩形。图中每个黑色方块代表一个像素,红色方块是假想像素。
2、开辟一段大小为M的数组,记为buff, 用来存储计算过程的中间变量,用红色方块表示
3、将矩形模板(紫色)从左上角(0,0)开始,逐像素向右滑动,到达行末时,矩形移动到下一行的开头(0,1),如此反复,每移动到一个新位置时,计算矩形内的像素和,保存在数组A中。以(0,0)位置为例进行说明:首先将绿色矩形内的每一列像素求和,结果放在buff内(红色方块

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值