小蓝书初中组(2nd) 方程与方程组 笔记&习题 总复习

第7章

主要内容

学会配方。

e.g 3

e.g 3 在实数范围内解方程

\[\sqrt{x} = \sqrt{y - 1} + \sqrt{z - 2} = \frac{1}{2}(x + y + z). \]

考虑先处理\(\frac{1}{2}\),然后将右边移项到左边,然后通过加减常数配方。
具体见P37~38。

习题7

Problem 3

3.试确定方程\((a^2 + 1)x^2 - 2ax + (a^2 + 4) = 0\)的实根的个数。
Sol: 这种题先尝试展开.

\[\begin{aligned} (a^2 + 1)x^2 - 2ax + (a^2 + 4) &= (ax)^2 + x^2 - 2ax + a^2 + 4\\ &= (ax + 1)^2 + x^2 + a^2 + 3 > 0\\ \end{aligned} \]

所以原方程无解。

Problem 5

5.已知\(a,b,c,x,y,z\)都是非零实数,且

\[a^2 + b^2 + c^2 = x^2 + y^2 + z^2 = ax + by + cz \]

求证:\(\frac{x}{a} = \frac{y}{b} = \frac{z}{c}\).
发现\(a^2,x^2,ax\)!考虑配方,欸,显然\(a^2 - 2ax + x^2 = 0\)!做完了。

Problem 6

6.已知\(a,b,c\)是三角形\(ABC\)的三边长,且满足

\[\frac{2a^2}{1 + a^2} = b,\frac{2b^2}{1 + b^2} = c,\frac{2c^2}{1 + c^2} = a, \]

试求三角形\(ABC\)的面积。
Sol:
zls:发现分母是和形式,不好配方!于是换下顺序,以第一个为例,换成\(\frac{1 + a^2}{2a^2} = \frac{1}{b}\),继续,\(\frac{1 + a^2}{a^2} = \frac{2}{b}\),处理,\(1 + \frac{1}{a^2} = \frac{2}{b}\)。同理,\(1 + \frac{1}{b^2} = \frac{2}{c},1 + \frac{1}{c^2} = \frac{1}{a}\).
全部相加,调整顺序,得\((\frac{1}{a} - 1)^2 + (\frac{1}{b} - 1)^2 + (\frac{1}{c} - 1)^2 = 0\),解得:

\[\begin{cases} a = 1\\b = 1\\c = 1 \end{cases} \]

易得\(S = \frac{\sqrt{3}}{4}\)

Problem 7

7.设多项式\(f(x) = ax^2 + bx + c\),且:

\[\forall{x \in \mathbb{R}},x^2 + 2x + 2 \le f(x) \le 2x^2 + 4x + 3, \]

\(f(9) = 121\),求\(a + b + c\)的值。(2011 初联改编)
看到\(x^2 + 2x + 2\)\(2x^2 + 4x + 3\)DNA就动了,立刻变成\((x + 1)^2 + 1\)\(2(x + 1)^2 + 1\),随手确定\(1 \le a \le 2\)
欸,形式怎么这么相似?易得\(f(x) = a(x + 1)^2 + 1(1 \le a \le 2)\),代入\(f(9)= 121\)\(a = 1.2\)
\(a = 1.2\)代入\(f(x) = a(x + 1)^2 + 1\)\(f(x) = 1.2x^2 + 2.4x + 2.2\),待定系数法(?得\(a = 1.2,b = 2.4,c = 2.2,a + b + c = 5.8\)

第8章

主要内容

一元二次方程求根公式:

\[x_{1,2} = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

并用一些Trick做题。

e.g 2

e.g 2 设\(a = \sqrt{7} - 1\),则代数式\(3a^3 + 12a^2 - 6a - 12\)的值为( )。
(A) \(24\) (B) \(25\) (C) \(4 \sqrt{7} + 10\) (D) \(4 \sqrt{7} + 12\)
我个人倾向于解法2,具体见P43,就是将\(a = \sqrt{7} - 1\)变成\((a + 1)^2 = 7 \to a^2 + 2a + 1 = 7 \to a^2 + 2a - 6 = 0\)\(a^2 + 2a = 6\)(有的时候看变形结果)。
解答见P43,还算常规但是比较巧妙的互补。

e.g 5

解关于\(x\)的方程\(a^2(x^2 - x + 1) - a(x^2 - 1) = (a^2 - 1)x\)
这啥玩意啊?考虑硬拆。\(a^2x^2 - a^2x + a^2 - (ax^2 - a) = a^2x - x \to a^2x^2 - a^2x + a^2 - ax^2 + a - a^2x + x = 0\).
考虑转化为\(Ax^2 + Bx + C = 0\)的形式,\((a^2 - a)x^2 - (2a^2 - 1)x + (a^2 + a) = 0\).
分类:

  • \(a^2 - a = 0\)\(a = 0\)\(x = 0\),\(a = 1\)\(x = 2\)
  • otherwise,通过公式法解得
\[x_1 = \frac{a + 1}{a},x_2 = \frac{a}{a - 1} \]

习题8

Problem 3

3.设关于\(x\)的方程\(x^2 + 5 + b = 0\)的两个实数根为\(x_1,x_2\),且\(|x_1 - x_2| = 3\),则\(b =\)_____.

分别将两个根表示出来,分类讨论。

Problem 4

4.已知\(a = \sqrt{5} - 1\),则\(2a^3 + 7a^2 - 2a - 12\)的值等于_____.(2010 初联)

易得\((a + 1) ^ 2 = 5,a^2 + 2a = 4\)

\[\begin{aligned} 2a^3 + 7a^2 - 2a - 12 &= 2a^3 + 4a^2 + 3a^2 - 2a - 12\\ &= 2a(a^2 +2a) -2a + 2a^2 - 12\\ &= 8a-2a+3a^2-12\\ &= 6a + 3a^2 - 12\\ &= 3(a^2 + 2a) - 12\\ &= 0 \end{aligned} \]

总之就是抓住一个式子配,然后带进去。

Problem 5

5.方程\(x^2 + ax + b = 0\)\(x^2 + cx + d = 0(a \neq c)\)有相同的根\(\alpha\),求\(\alpha\)。(2002 重庆联赛)

\(\alpha\)带入,得:

\[\begin{cases} \alpha^2 + a\alpha + b = 0\\ \alpha^2 + c\alpha + d = 0 \end{cases} \]

上下相减,得\((a - c)\alpha + b - d = 0\)
易得\(\alpha = \frac{d - b}{a - c}\)

当有两个一元二次方程时,有时\(a\)(或\(b\))相同的情况下可以考虑相减。

Problem 6

6.已知方程\(x^2 - kx - 7 = 0\)\(x^2 - 6x - (k + 1) = 0\),求使得这两个方程有公共根的所有\(k\)值,并求其所有公共根与所有相异根.

一个算是比较常规的分类讨论题。
设两个的公共根为\(x_0\),得

\[\begin{cases} x_0^2 - kx_0 - 7 = 0\\ x_0^2 - 6x_0 - (k + 1) = 0 \end{cases} \]

发现\(x_0^2\)项可以消,上下相减得\((6 - k)x_0 = 6 - k\)
这时你可能直接消掉\(6 - k\)完事,等等,让我们回顾一下等式的性质

等式的性质(节选):等式两边同时乘或除以一个相同的不为0的数,等式仍然成立。

消掉\(6 - k\)必须要保证\(6 - k \neq 0\),即\(k \neq 6\)
考虑分类:

  • \(k \neq 6\),则公共根\(x_0 = 1\),同时求出\(k = -6\)。带入求得相异根为\(x = -7\)\(x = 5\)
  • \(k = 6\),则公共根为\(x = 7\)\(x = -1\),无相异根。

第9章

主要内容

判别式:
对于一个一元二次方程\(ax^2 + bx + c = 0(a \neq 0)\),我们称\(b^2 - 4ac\)为这个方程的判别式,记作\(\Delta\).

  • \(\Delta = 0\)时,方程有重根;
  • \(\Delta > 0\)时,方程的两个根为:
\[x_1 = \frac{-b + \sqrt{\Delta}}{2a},x_2 = \frac{-b - \sqrt{\Delta}}{2a} \]
  • \(\Delta < 0\)时,方程无实数根。

书中还给到\((2ax + b)^2 = b^2 - 4ac = \Delta\),有时很有用。

e.g 1

e.g 1 已知\(a,b,c\)是三角形的三边,试判别方程\(b^2x^2 + (b^2+c^2 - a^2)x + c^2 = 0\)有无实数根?

第一眼,三角形的三边,肯定有不少不等式关系。
第二眼:\(Ax^2 + Bx + C = 0\)形式,直接代入求\(\Delta\).

\[\begin{aligned} \Delta &= B^2 - 4AC\\ &= (b^2 + c^2 - a^2)^2 - 4b^2c^2\\ &= (b^2 + c^2 - a^2 + 2bc) (b^2 + c^2 - a^2 - 2bc)\\ &= [(b + c)^2 - a^2][(b - c)^2 - a^2]\\ &= (b + c + a)(b + c - a)(b - c + a)(b - c - a)\\ \end{aligned} \]

不难发现\(b + c + a > 0,b + c - a > 0,b - c + a > 0,b - c - a < 0\),所以\(\Delta < 0\),所以方程无实数根。

e.g 2

e.g 2 求方程\(x + y = x^2 - xy + y^2 + 1\)的解。

发现是二元的方程,没事!瞄准\(x\)(\(y\)当然也可以)来解。

易得\(x^2 - (y + 1)x + (y^2 - y + 1) = 0 \space (1)\).

\[\begin{aligned} \Delta &= (y + 1) ^ 2 - 4(y^2 - y + 1) \\ &= y^2 + 2y + 1 - 4y^2 + 4y - 4\\ &= -3y^2 + 6y - 3\\ &= -3(y^2 - 2y + 1)\\ &= -3(y - 1)^2 \le 0 \end{aligned} \]

而只有在\(\Delta \le 0\)的时候才会有解,所以\(-3(y - 1)^2 = 0,y = 1\)
\(y = 1\)代入\((1)\)\(x^2 - 2x + 1 = 0\),解得\(x = 1\).
所以原方程的解为

\[\begin{cases} x = 1\\ y = 1 \end{cases} \]

e.g 4

e.g 4 设\(a,b,c\)是不全相等的实数,三个方程\(ax^2 + 2bx + c = 0,bx^2 + 2cx + a = 0,cx^2 + 2ax + b = 0\)能同时有相等实数根吗?
若一个一元二次方程有相等的根,即它的\(\Delta = 0\)
易得

\[\begin{cases} \Delta_1 = 4b^2 - 4ac\\ \Delta_2 = 4c^2 - 4ab\\ \Delta_3 = 4a^2 - 4bc \end{cases} \]

不难发现有一堆看上去像完全平方式的要素,所以考虑相加:

\[\begin{aligned} \Delta_1 + \Delta_2 + \Delta_3 &= 4(b^2 - 4ac) + 4(c^2 - 4ab) + 4(a^2 - 4bc)\\ &= 2[b^2 + b^2 - 2ac + c^2 + c^2 - 2ab + a^2 + a^2 - 2bc]\\ &= 2[(a - b)^2 + (b - c)^2 + (c - a)^2] \ge 0 \end{aligned} \]

由于\(a,b,c\)不全相等,所以\(\Delta_1 + \Delta_2 + \Delta_3 > 0\),所以不可能。

e.g 5

e.g 5 试求出这样的四位数,它的前两位数字与后两位数字分别组成的两位数的和的平方,恰好等于这个四位数.(2003 初联)
分别设前两位为\(x\),后两位为\(y\),得\((x + y)^2 = 100x + y\),要使其有解,则\(\Delta = (2y - 100)^2 - 4(y^2 - y) \ge 0\),解得\(y \le 25\)
然后我就不会做了,感觉书上的做法很凑,于是:

//search.cpp
# include <bits/stdc++.h>
using namespace std;

bool is_ok(int x)
{
    double sq = sqrt(x);
    if(sq == int(sq)) return 1;
    else return 0;
}

int main(void)
{
    for(int y = 10; y <= 25; y++)
    {
        if(is_ok(2500 - 99 * y)) printf("%d\n",y);
    }
    return 0;
}
运行结果:
25

确定\(y = 25\),然后代入\(x_{1,2} = 50 - y \pm \sqrt{2500 - 99y}\),得\(x_1 = 30,x_2 = 20\)。即四位数为\(2025\)\(3025\)

习题9

Problem 3

3.已知关于\(x\)的方程\(x^2 - 2\sqrt{-a}x + \frac{(a - 1)^2}{4} = 0\)有实数根,其中\(a\)为实数,求\(a^{2012} - x^{2012}\)的值。
第一眼,\(\Delta = -4a - (a - 1)^2 = -4a - (a^2 - 2a + 1) = -4a - a^2 + 2a - 1 = -2a - a^2 - 1 \ge 0\)
第二眼,\(a^2 + 2a + 1 \le 0 \to (a + 1)^2 \le 0 \to (a + 1)^2 = 0 \to a + 1 = 0 \to a = -1\)
第三眼,代入\(a = -1\),得\(x = 1\)
第四眼,原式\(= 1 - 1 = 0\).

似乎都没啥好讲的/jk

第10章

主要内容

  • 韦达定理

\(x_1,x_2\)是一元二次方程\(ax^2 + bx + c = 0\)的解,那么\(x_1,x_2\)满足:

\[\begin{cases} x_1 + x_2 = -\frac{a}{b}\\ x_1x_2 = \frac{c}{a} \end{cases} \]

Proof: 设\(\Delta = b^2 - 4ac\)。则\(x_1 = \frac{-b + \sqrt{\Delta}}{2a},x_2 = \frac{-b - \sqrt{\Delta}}{2a}\),\(x_1 + x_2 = \frac{-b + \sqrt{\Delta} - b - \sqrt{\Delta}}{2a} = \frac{-2b}{2a} = -\frac{b}{a}\).\(x_1x_2 = \frac{b^2 - \Delta}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}\).证毕。

反过来,若两数\(x_1,x_2\)满足\(x_1 + x_2 = -\frac{a}{b},x_1x_2 = \frac{c}{a}\),那么\(x_1,x_2\)即是\(ax^2 + bx + c = 0\)的解。(充要条件)

  • 判断根的性质

e.g 1

\(x_1,x_2\)是方程\(x^2 - 2(k + 1)x + k^2 + 2 = 0\)的两个实数根,且\((x_1 + 1)(x_2 + 1) = 8\),求\(k\)的值。

第一眼,两个实数根,\(\Delta = [2(k + 1)^2]^2 - 4(k^2 + 2) \ge 0 \to 4(k + 1)^2 - 4(k^2 + 2) \ge 0 \to k^2 + 2k + 1 - k^2 - 2 \ge 0 \to 2k - 1 \ge 0 \to k \ge \frac{1}{2}\).

第二眼,韦达定理,\(x_1 + x_2 = 2(k + 1),x_1x_2 = k^2 + 2\),则:

\[\begin{aligned} (x_1 + 1)(x_2 + 1) &= x_1x_2 + x_1 + x_2 + 1\\ &= 2k + 2 + k^2 + 2 + 1 \\ &= k^2 + 2k + 5\\ \end{aligned} \]

\(k^2 + 2k + 5 = 8 \to (k + 1)^2 = 4 \to k_1 = -3,k_2 = 1\)
因为\(k \ge \frac{1}{2}\),所以\(k = 1\)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值