上一篇博文写了用三重循环暴力法求最长回文子串,这篇文章写了用中间扩展法求最长回文子串,和暴力法一样,中间扩展法最开始也需要预处理数组,仅仅把字母保留下来且全部转换成大写字母,然后用一个数组p去存这些字母在原字符串中的位置,以备输出之用,中间扩展法的时间复杂度为O(N^2)。
#include
#include
#include
#define MAX 5000+10
using namespace std;
char buf[MAX],s[MAX],p[MAX];
int main(){
int i,j,max=0,x,y,m=0;
fgets(buf,MAX,stdin); //用fgets函数读取键盘输入的一行数据
for(i=0;i
=0&&i+j<=m;j++){ //如果回文是奇数,这个遍历成立
if(s[i-j] != s[i+j]) //循环j不是遍历数组,而是从回文的中间开始往两边扩散
break;
else{
if(j*2+1>max){
max = j*2+1;
x=p[i-j];
y=p[i+j];
}
}
}
for(j=0;i-j>=0&&i+j+1<=m;j++){ //如果回文是偶数,这个遍历成立
if(s[i-j] != s[i+j+1]) //循环j不是遍历数组,而是从回文的中间开始往两边扩散
break;
else{
if(j*2+2>max){
max = j*2+2;
x=p[i-j];
y=p[i+j+1];
}
}
}
}
for(i=x;i<=y;i++)
cout<