LeetCode No.240 Search a 2D Matrix II

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted in ascending from left to right.
  • Integers in each column are sorted in ascending from top to bottom.

For example,

Consider the following matrix:

[
  [1,   4,  7, 11, 15],
  [2,   5,  8, 12, 19],
  [3,   6,  9, 16, 22],
  [10, 13, 14, 17, 24],
  [18, 21, 23, 26, 30]
]

Given target = 5, return true.

Given target = 20, return false.

====================================================================================================================================

这道题的大意是:给定一个每行每列都是严格递增的矩阵,查找一个数是否在矩阵里面。

我想到的是从左上角开始找,对于每个节点都分三种情况>=<,这样分开遍历整个矩阵,但这种做法比直接遍历整个矩阵还要费时,因为有些节点可能会多次访问。果然不出所料,TLE了。

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        if ( ! matrix.size() || ! matrix[0].size() )
            return false ;
        int m = matrix.size() , n = matrix[0].size() ;
        return search ( 0 , 0 , m , n , matrix , target ) ;
    }
    
    bool search ( int c , int l , int m , int n , vector<vector<int>>& matrix , int target )
    {
        if ( ! ( c < m && l < n ) )
            return false ;
        if ( matrix[c][l] == target )
            return true ;
        if ( matrix[c][l] > target )
            return false ;
        return ( search ( c + 1 , l , m , n , matrix , target ) || search ( c , l + 1 , m , n , matrix , target ) ) ;
    }
};

从前往后找必定会遇到多个分叉,并且分叉还会相交,这明显不是明智之举。但从后往前找呢?右下角往前推也会遇到类似的问题。既然从前往后和从后往前都不行,不妨试试从边角(右上角或左下角)开始找,我们发现,这样找虽然也是每个节点分三种情况讨论,但最终只会生成一个分叉,比如从右上角开始,每次查找要么向左要么向下,最坏的查找时间复杂度为O(m+n),这样比遍历整个矩阵简单多了,也能体现这种特殊矩阵的优越性。

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        if ( ! matrix.size() || ! matrix[0].size() )
            return false ;
        int i = 0 , j = matrix[0].size() - 1 ;
        while ( i < matrix.size() && j >= 0 )
        {
            int num = matrix[i][j] ;
            if ( num == target )
                return true ;
            else if (  target > num )
                i ++ ;
            else
                j -- ;
        }
        return false ;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值