oj|牛的旅行(1284)(绝对正确)

描述

农民John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区不连通。现在,John想在农场里添加一条路径 ( 注意,恰好一条 )。对这条路径有这样的限制:一个牧场的直径就是牧场中最远的两个牧区的距离 ( 本题中所提到的所有距离指的都是最短的距离 )。考虑如下的两个牧场,图1是有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:

在这里插入图片描述

图1所示的牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。这两个牧场都在John的农场上。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。现在请你编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。

输入

第 1 行:一个整数N (1 ≤ N ≤ 150), 表示牧区数;第 2 到 N+1 行:每行两个整数X,Y ( 0 ≤ X,Y≤ 100000 ), 表示N个牧区的坐标。每个牧区的坐标都是不一样的。第 N+2 行到第 2*N+1 行:每行包括N个数字 ( 0或1 ) 表示一个对称邻接矩阵。例如,题目描述中的两个牧场的矩阵描述如下:

A B C D E F G H

A 0 1 0 0 0 0 0 0

B 1 0 1 1 1 0 0 0

C 0 1 0 0 1 0 0 0

D 0 1 0 0 1 0 0 0

E 0 1 1 1 0 0 0 0

F 0 0 0 0 0 0 1 0

G 0 0 0 0 0 1 0 1

H 0 0 0 0 0 0 1 0

输入数据中至少包括两个不连通的牧区。

输出

只有一行,包括一个实数,表示所求答案。数字保留六位小数。

 

#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>

#define x first
#define y second

using namespace std;

typedef pair<double, double> PDD;

const int N = 155;
const double INF = 1e20;

int n;
PDD q[N];
double d[N][N];
double maxd[N];
char g[N][N];

double get_dist(PDD a, PDD b)
{
    double dx = a.x - b.x;
    double dy = a.y - b.y;
    return sqrt(dx * dx + dy * dy);
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ ) cin >> q[i].x >> q[i].y;
    for (int i = 0; i < n; i ++ ) cin >> g[i];

    for (int i = 0; i < n; i ++ )//先初始化一下两两点之间的距离
        for (int j = 0; j < n; j ++ )
            if (i == j) d[i][j] = 0;
            else if (g[i][j] == '1') d[i][j] = get_dist(q[i], q[j]);
            else d[i][j] = INF;

    for (int k = 0; k < n; k ++ )//Floyd算法
        for (int i = 0; i < n; i ++ )
            for (int j = 0; j < n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);

    double r1 = 0;
    for (int i = 0; i < n; i ++ )//求出一个点到其他点的最大距离
    {
        for (int j = 0; j < n; j ++ )
            if (d[i][j] < INF / 2)
                maxd[i] = max(maxd[i], d[i][j]);
        r1 = max(r1, maxd[i]);
    }

    double r2 = INF;
    for (int i = 0; i < n; i ++ )//枚举一下哪两个不同连通块的点相连
        for (int j = 0; j < n; j ++ )
            if (d[i][j] > INF / 2)
                r2 = min(r2, maxd[i] + maxd[j] + get_dist(q[i], q[j]));

    printf("%.6lf\n", max(r1, r2));

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值