03 hadoop集群搭建

 

集群介绍

 

1.1、什么是hadoop集群

 

HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起。

HDFS集群负责海量数据的存储,集群中的角色主要有:

NameNode、DataNode、SecondaryNameNode

YARN集群负责海量数据运算时的资源调度,集群中的角色主要有:

ResourceManager、NodeManager

那mapreduce是什么呢?它其实是一个分布式运算编程框架,是应用程序开发包,由用户按照编程规范进行程序开发,后打包运行在HDFS集群上,并且受到YARN集群的资源调度管理。

 

 

 

 

一、集群部署机器规划

 

以三台主机为例,以下是集群规划:

      主机

组件  

node1

(192.168.88.161)

node2

(192.168.88.162)

node3

(192.168.88.163)

NameNode

Secondary

Namenode

DataNode

ResourceManager

NodeManager

 



 

二、集群部署

 

2.1 三台虚拟机创建

省略

 

2.2 hadoop重新编译

2.2.1 为什么要编译hadoop

 

由于appache给出的hadoop的安装包没有提供带C程序访问的接口,所以我们在使用本地库(本地库可以用来做压缩,以及支持C程序等等)的时候就会出问题,需要对Hadoop源码包进行重新编译,请注意,资料中已经提供好了编译过的Hadoop安装包,所以这一部分的操作,大家可以不用做,了解即可

 

 

 

 

2.3 hadoop安装目录结构

bin:

Hadoop最基本的管理脚本和使用脚本的目录,这些脚本是sbin目录下管理脚本的基础实现,用户可以直接使用这些脚本管理和使用Hadoop。

etc

Hadoop配置文件所在的目录,包括core-site,xml、hdfs-site.xml、mapred-site.xml等从Hadoop1.0继承而来的配置文件和yarn-site.xml等Hadoop2.0新增的配置文件。

include

对外提供的编程库头文件(具体动态库和静态库在lib目录中),这些头文件均是用C++定义的,通常用于C++程序访问HDFS或者编写MapReduce程序。

lib

该目录包含了Hadoop对外提供的编程动态库和静态库,与include目录中的头文件结合使用。

libexec

各个服务对用的shell配置文件所在的目录,可用于配置日志输出、启动参数(比如JVM参数)等基本信息。

sbin

Hadoop管理脚本所在的目录,主要包含HDFS和YARN中各类服务的启动/关闭脚本。

share

Hadoop各个模块编译后的jar包所在的目录,官方自带示例。

 

2.4 hadoop配置文件修改(核心)

 

Hadoop安装主要就是配置文件的修改,一般在主节点进行修改,完毕后scp下发给其他各个从节点机器。

 

注意,以下所有操作都在node1主机进行。

 

在进行下面的操作, 请先将编译后的hadoop包上传到linux, 并且解压到/export/server

 

2.4.1 hadoop-env.sh

cd  /export/server/hadoop-2.7.5/etc/hadoop

vim  hadoop-env.sh

添加一下内容:

export JAVA_HOME=/export/server/jdk1.8.0_241

 

2.4.2 core-site.xml

hadoop的核心配置文件,有默认的配置项core-default.xml。

core-default.xml与core-site.xml的功能是一样的,如果在core-site.xml里没有配置的属性,则会自动会获取core-default.xml里的相同属性的值。

<configuration>
    <!-- 用于设置Hadoop的文件系统,由URI指定 -->
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://node1:8020</value>
    </property>
    <!-- 配置Hadoop存储数据目录,默认/tmp/hadoop-${user.name} -->
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/export/server/hadoop-2.7.5/hadoopDatas/tempDatas</value>
    </property>
    <!--  缓冲区大小,实际工作中根据服务器性能动态调整: 根据自己的虚拟机的内存大小进行配置即可, 不要小于1GB, 最高配置为 4gb  -->
    <property>
        <name>io.file.buffer.size</name>
        <value>4096</value>
    </property>
    <!--  开启hdfs的垃圾桶机制,删除掉的数据可以从垃圾桶中回收,单位分钟 -->
    <property>
        <name>fs.trash.interval</name>
        <value>10080</value>
    </property>
</configuration>

2.4.3 hdfs-site.xml

HDFS的核心配置文件,主要配置HDFS相关参数,有默认的配置项hdfs-default.xml。

hdfs-default.xml与hdfs-site.xml的功能是一样的,如果在hdfs-site.xml里没有配置的属性,则会自动会获取hdfs-default.xml里的相同属性的值。

 

cd  /export/server/hadoop-2.7.5/etc/hadoop

vim  hdfs-site.xml

 

<configuration>
    <!-- 指定SecondaryNameNode的主机和端口 -->
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>node2:50090</value>
    </property>
    <!-- 指定namenode的页面访问地址和端口 -->
    <property>
        <name>dfs.namenode.http-address</name>
        <value>node1:50070</value>
    </property>
    <!-- 指定namenode元数据的存放位置 -->
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:///export/server/hadoop-2.7.5/hadoopDatas/namenodeDatas</value>
    </property>
    <!--  定义datanode数据存储的节点位置 -->
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:///export/server/hadoop-2.7.5/hadoopDatas/datanodeDatas</value>
    </property>
    <!-- 定义namenode的edits文件存放路径 -->
    <property>
        <name>dfs.namenode.edits.dir</name>
        <value>file:///export/server/hadoop-2.7.5/hadoopDatas/nn/edits</value>
    </property>

    <!-- 配置检查点目录 -->
    <property>
        <name>dfs.namenode.checkpoint.dir</name>
        <value>file:///export/server/hadoop-2.7.5/hadoopDatas/snn/name</value>
    </property>

    <property>
        <name>dfs.namenode.checkpoint.edits.dir</name>
        <value>file:///export/server/hadoop-2.7.5/hadoopDatas/dfs/snn/edits</value>
    </property>
    <!-- 文件切片的副本个数-->
    <property>
        <name>dfs.replication</name>
        <value>3</value>
    </property>

    <!-- 设置HDFS的文件权限-->
    <property>
        <name>dfs.permissions</name>
        <value>false</value>
    </property>
    <!-- 设置一个文件切片的大小:128M-->
    <property>
        <name>dfs.blocksize</name>
        <value>134217728</value>
    </property>
    <!-- 指定DataNode的节点配置文件 -->
    <property>
        <name>dfs.hosts</name>
        <value>/export/server/hadoop-2.7.5/etc/hadoop/slaves</value>
    </property>
</configuration>

 

 

2.4.4 mapred-site.xml

MapReduce的核心配置文件,Hadoop默认只有个模板文件mapred-site.xml.template,需要使用该文件复制出来一份mapred-site.xml文件

cd  /export/server/hadoop-2.7.5/etc/hadoop

cp mapred-site.xml.template mapred-site.xml

vim  mapred-site.xml

 

<configuration>
    <!-- 指定分布式计算使用的框架是yarn -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>

    <!-- 开启MapReduce小任务模式 -->
    <property>
        <name>mapreduce.job.ubertask.enable</name>
        <value>true</value>
    </property>

    <!-- 设置历史任务的主机和端口 -->
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>node1:10020</value>
    </property>

    <!-- 设置网页访问历史任务的主机和端口 -->
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>node1:19888</value>
    </property>
</configuration>

 

2.4.5 mapred-env.sh

cd  /export/server/hadoop-2.7.5/etc/hadoop

vim  mapred-env.sh

添加如下

export JAVA_HOME=/export/server/jdk1.8.0_241

 

2.4.6 yarn-site.xml

cd  /export/server/hadoop-2.7.5/etc/hadoop

vim  yarn-site.xml

<configuration>

    <!-- 配置yarn主节点的位置 -->
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>node1</value>
    </property>

    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!-- 开启日志聚合功能 -->
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
    <!-- 设置聚合日志在hdfs上的保存时间 -->
    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>604800</value>
    </property>
    <!-- 设置yarn集群的内存分配方案 -->
    <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>20480</value>
    </property>
    <property>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>2048</value>
    </property>
    <property>
        <name>yarn.nodemanager.vmem-pmem-ratio</name>
        <value>2.1</value>
    </property>

</configuration>

 

2.4.7 slaves

 

slaves文件里面记录的是集群主机名。一般有以下两种作用:

一是:配合一键启动脚本如start-dfs.sh、stop-yarn.sh用来进行集群启动。这时候slaves文件里面的主机标记的就是从节点角色所在的机器。

二是:可以配合hdfs-site.xml里面dfs.hosts属性形成一种白名单机制。

dfs.hosts指定一个文件,其中包含允许连接到NameNode的主机列表。必须指定文件的完整路径名,那么所有在slaves中的主机才可以加入的集群中。如果值为空,则允许所有主机。

 

cd  /export/server/hadoop-2.7.5/etc/hadoop

vim  slaves

删除slaves中的localhost,然后添加以下内容:

node1

node2

node3

 

 

2.5 数据目录创建和文件分发

注意,以下所有操作都在node1主机进行

1、目录创建

mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/tempDatas

mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/namenodeDatas

mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/datanodeDatas

mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/nn/edits

mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/snn/name

mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/dfs/snn/edits

 

2、文件分发

将配置好的Hadoop目录分发到node2和node3主机。

scp -r/export/server/hadoop-2.7.5/ node2:/export/server/

scp -r/export/server/hadoop-2.7.5/ node3:/export/server/

 

2.6 配置Hadoop的环境变量

注意,三台机器都需要执行以下命令

vim  /etc/profile

添加以下内容:

export HADOOP_HOME=/export/server/hadoop-2.7.5

export PATH=:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

source/etc/profile

测试

hadoop version

 

2.7 启动集群

 

2.7.1 启动前需要格式化

注意:首次启动HDFS时,必须对其进行格式化操作

在node1上执行格式化指令

hadoopnamenode -format

 

2.7.2 单节点逐个启动

在node1主机上使用以下命令启动HDFS NameNode:

hadoop-daemon.sh start namenode

 

在node1、node2、node3三台主机上,分别使用以下命令启动HDFS DataNode:

hadoop-daemon.sh startdatanode

在node1主机上使用以下命令启动YARN ResourceManager:

yarn-daemon.sh  start resourcemanager

在node1、node2、node3三台主机上使用以下命令启动YARN nodemanager:

yarn-daemon.sh start nodemanager

在node2上启动 secondarynamenode

hadoop-daemon.sh  start  secondarynamenode

 

 

以上脚本位于/export/server/hadoop-2.7.5/sbin目录下。如果想要停止某个节点上某个角色,只需要把命令中的start改为stop即可。

 

 

2.7.3 脚本一键启动(这个命令重点)

启动HDFS,为什么start-dfs.sh命令可以直接执行,因为他是sbin目录下,拥有超管权限

start-dfs.sh

启动Yarn

start-yarn.sh

 

启动历史任务服务进程

mr-jobhistory-daemon.sh start historyserver

 

启动之后,使用jps命令查看相关服务是否启动,jps是显示Java相关的进程命令

 

node1:

 

node2:

 

 

node3

 

 

2.8 停止集群

stop-dfs.sh

stop-yarn.sh

mr-jobhistory-daemon.sh stop historyserver

 

2.9 集群访问页面

 

查看NameNode页面地址:

http://192.168.88.161:50070/ 

查看Yarn集群页面地址:

http://192.168.88.161:8088/cluster 

查看MapReduce历史任务页面地址:

http://192.168.88.161:19888/jobhistory

 

2.9 主机名访问

 

1、打开Windows的C:\Windows\System32\drivers\etc目录下hosts文件

2、在hosts文件中添加以下域名映射

192.168.88.161  node1  node1.com.cn

192.168.88.162  node2  node2.com.cn

192.168.88.163  node3  node3.com.cn

配置完之后,可以将以上地址中的IP替换为主机名即可访问,如果还不能访问,则需要重启Windows电脑,比如访问NameNode,可以使用http://node1:50070/ 

 

在hosts文件配置了后,先走hosts域名解析,如果hosts中的不存在,则会走dns域名解析服务器

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值