集群介绍
1.1、什么是hadoop集群
HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起。
HDFS集群负责海量数据的存储,集群中的角色主要有:
NameNode、DataNode、SecondaryNameNode
YARN集群负责海量数据运算时的资源调度,集群中的角色主要有:
ResourceManager、NodeManager
那mapreduce是什么呢?它其实是一个分布式运算编程框架,是应用程序开发包,由用户按照编程规范进行程序开发,后打包运行在HDFS集群上,并且受到YARN集群的资源调度管理。
一、集群部署机器规划
以三台主机为例,以下是集群规划:
主机 组件 | node1 (192.168.88.161) | node2 (192.168.88.162) | node3 (192.168.88.163) |
NameNode | 是 | 否 | 否 |
Secondary Namenode | 否 | 是 | 否 |
DataNode | 是 | 是 | 是 |
ResourceManager | 是 | 否 | 否 |
NodeManager | 是 | 是 | 是 |
二、集群部署
2.1 三台虚拟机创建
省略
2.2 hadoop重新编译
2.2.1 为什么要编译hadoop
由于appache给出的hadoop的安装包没有提供带C程序访问的接口,所以我们在使用本地库(本地库可以用来做压缩,以及支持C程序等等)的时候就会出问题,需要对Hadoop源码包进行重新编译,请注意,资料中已经提供好了编译过的Hadoop安装包,所以这一部分的操作,大家可以不用做,了解即可。
2.3 hadoop安装目录结构
bin:
Hadoop最基本的管理脚本和使用脚本的目录,这些脚本是sbin目录下管理脚本的基础实现,用户可以直接使用这些脚本管理和使用Hadoop。
etc:
Hadoop配置文件所在的目录,包括core-site,xml、hdfs-site.xml、mapred-site.xml等从Hadoop1.0继承而来的配置文件和yarn-site.xml等Hadoop2.0新增的配置文件。
include:
对外提供的编程库头文件(具体动态库和静态库在lib目录中),这些头文件均是用C++定义的,通常用于C++程序访问HDFS或者编写MapReduce程序。
lib:
该目录包含了Hadoop对外提供的编程动态库和静态库,与include目录中的头文件结合使用。
libexec:
各个服务对用的shell配置文件所在的目录,可用于配置日志输出、启动参数(比如JVM参数)等基本信息。
sbin:
Hadoop管理脚本所在的目录,主要包含HDFS和YARN中各类服务的启动/关闭脚本。
share:
Hadoop各个模块编译后的jar包所在的目录,官方自带示例。
2.4 hadoop配置文件修改(核心)
Hadoop安装主要就是配置文件的修改,一般在主节点进行修改,完毕后scp下发给其他各个从节点机器。
注意,以下所有操作都在node1主机进行。
在进行下面的操作, 请先将编译后的hadoop包上传到linux, 并且解压到/export/server
2.4.1 hadoop-env.sh
cd /export/server/hadoop-2.7.5/etc/hadoop
vim hadoop-env.sh
添加一下内容:
export JAVA_HOME=/export/server/jdk1.8.0_241
2.4.2 core-site.xml
hadoop的核心配置文件,有默认的配置项core-default.xml。
core-default.xml与core-site.xml的功能是一样的,如果在core-site.xml里没有配置的属性,则会自动会获取core-default.xml里的相同属性的值。
<configuration>
<!-- 用于设置Hadoop的文件系统,由URI指定 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://node1:8020</value>
</property>
<!-- 配置Hadoop存储数据目录,默认/tmp/hadoop-${user.name} -->
<property>
<name>hadoop.tmp.dir</name>
<value>/export/server/hadoop-2.7.5/hadoopDatas/tempDatas</value>
</property>
<!-- 缓冲区大小,实际工作中根据服务器性能动态调整: 根据自己的虚拟机的内存大小进行配置即可, 不要小于1GB, 最高配置为 4gb -->
<property>
<name>io.file.buffer.size</name>
<value>4096</value>
</property>
<!-- 开启hdfs的垃圾桶机制,删除掉的数据可以从垃圾桶中回收,单位分钟 -->
<property>
<name>fs.trash.interval</name>
<value>10080</value>
</property>
</configuration>
2.4.3 hdfs-site.xml
HDFS的核心配置文件,主要配置HDFS相关参数,有默认的配置项hdfs-default.xml。
hdfs-default.xml与hdfs-site.xml的功能是一样的,如果在hdfs-site.xml里没有配置的属性,则会自动会获取hdfs-default.xml里的相同属性的值。
cd /export/server/hadoop-2.7.5/etc/hadoop
vim hdfs-site.xml
<configuration>
<!-- 指定SecondaryNameNode的主机和端口 -->
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>node2:50090</value>
</property>
<!-- 指定namenode的页面访问地址和端口 -->
<property>
<name>dfs.namenode.http-address</name>
<value>node1:50070</value>
</property>
<!-- 指定namenode元数据的存放位置 -->
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///export/server/hadoop-2.7.5/hadoopDatas/namenodeDatas</value>
</property>
<!-- 定义datanode数据存储的节点位置 -->
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///export/server/hadoop-2.7.5/hadoopDatas/datanodeDatas</value>
</property>
<!-- 定义namenode的edits文件存放路径 -->
<property>
<name>dfs.namenode.edits.dir</name>
<value>file:///export/server/hadoop-2.7.5/hadoopDatas/nn/edits</value>
</property>
<!-- 配置检查点目录 -->
<property>
<name>dfs.namenode.checkpoint.dir</name>
<value>file:///export/server/hadoop-2.7.5/hadoopDatas/snn/name</value>
</property>
<property>
<name>dfs.namenode.checkpoint.edits.dir</name>
<value>file:///export/server/hadoop-2.7.5/hadoopDatas/dfs/snn/edits</value>
</property>
<!-- 文件切片的副本个数-->
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<!-- 设置HDFS的文件权限-->
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
<!-- 设置一个文件切片的大小:128M-->
<property>
<name>dfs.blocksize</name>
<value>134217728</value>
</property>
<!-- 指定DataNode的节点配置文件 -->
<property>
<name>dfs.hosts</name>
<value>/export/server/hadoop-2.7.5/etc/hadoop/slaves</value>
</property>
</configuration>
2.4.4 mapred-site.xml
MapReduce的核心配置文件,Hadoop默认只有个模板文件mapred-site.xml.template,需要使用该文件复制出来一份mapred-site.xml文件
cd /export/server/hadoop-2.7.5/etc/hadoop
cp mapred-site.xml.template mapred-site.xml
vim mapred-site.xml
<configuration>
<!-- 指定分布式计算使用的框架是yarn -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<!-- 开启MapReduce小任务模式 -->
<property>
<name>mapreduce.job.ubertask.enable</name>
<value>true</value>
</property>
<!-- 设置历史任务的主机和端口 -->
<property>
<name>mapreduce.jobhistory.address</name>
<value>node1:10020</value>
</property>
<!-- 设置网页访问历史任务的主机和端口 -->
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>node1:19888</value>
</property>
</configuration>
2.4.5 mapred-env.sh
cd /export/server/hadoop-2.7.5/etc/hadoop
vim mapred-env.sh
添加如下
export JAVA_HOME=/export/server/jdk1.8.0_241
2.4.6 yarn-site.xml
cd /export/server/hadoop-2.7.5/etc/hadoop
vim yarn-site.xml
<configuration>
<!-- 配置yarn主节点的位置 -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>node1</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 开启日志聚合功能 -->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!-- 设置聚合日志在hdfs上的保存时间 -->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>604800</value>
</property>
<!-- 设置yarn集群的内存分配方案 -->
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>20480</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.1</value>
</property>
</configuration>
2.4.7 slaves
slaves文件里面记录的是集群主机名。一般有以下两种作用:
一是:配合一键启动脚本如start-dfs.sh、stop-yarn.sh用来进行集群启动。这时候slaves文件里面的主机标记的就是从节点角色所在的机器。
二是:可以配合hdfs-site.xml里面dfs.hosts属性形成一种白名单机制。
dfs.hosts指定一个文件,其中包含允许连接到NameNode的主机列表。必须指定文件的完整路径名,那么所有在slaves中的主机才可以加入的集群中。如果值为空,则允许所有主机。
cd /export/server/hadoop-2.7.5/etc/hadoop
vim slaves
删除slaves中的localhost,然后添加以下内容:
node1
node2
node3
2.5 数据目录创建和文件分发
注意,以下所有操作都在node1主机进行
1、目录创建
mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/tempDatas
mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/namenodeDatas
mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/datanodeDatas
mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/nn/edits
mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/snn/name
mkdir -p /export/server/hadoop-2.7.5/hadoopDatas/dfs/snn/edits
2、文件分发
将配置好的Hadoop目录分发到node2和node3主机。
scp -r/export/server/hadoop-2.7.5/ node2:/export/server/
scp -r/export/server/hadoop-2.7.5/ node3:/export/server/
2.6 配置Hadoop的环境变量
注意,三台机器都需要执行以下命令
vim /etc/profile
添加以下内容:
export HADOOP_HOME=/export/server/hadoop-2.7.5
export PATH=:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
source/etc/profile
测试
hadoop version
2.7 启动集群
2.7.1 启动前需要格式化
注意:首次启动HDFS时,必须对其进行格式化操作
在node1上执行格式化指令
hadoopnamenode -format
2.7.2 单节点逐个启动
在node1主机上使用以下命令启动HDFS NameNode:
hadoop-daemon.sh start namenode |
在node1、node2、node3三台主机上,分别使用以下命令启动HDFS DataNode:
hadoop-daemon.sh startdatanode |
在node1主机上使用以下命令启动YARN ResourceManager:
yarn-daemon.sh start resourcemanager |
在node1、node2、node3三台主机上使用以下命令启动YARN nodemanager:
yarn-daemon.sh start nodemanager |
在node2上启动 secondarynamenode
hadoop-daemon.sh start secondarynamenode |
以上脚本位于/export/server/hadoop-2.7.5/sbin目录下。如果想要停止某个节点上某个角色,只需要把命令中的start改为stop即可。
2.7.3 脚本一键启动(这个命令重点)
启动HDFS,为什么start-dfs.sh命令可以直接执行,因为他是sbin目录下,拥有超管权限
start-dfs.sh
启动Yarn
start-yarn.sh
启动历史任务服务进程
mr-jobhistory-daemon.sh start historyserver
启动之后,使用jps命令查看相关服务是否启动,jps是显示Java相关的进程命令
node1:
node2:
node3
2.8 停止集群
stop-dfs.sh
stop-yarn.sh
mr-jobhistory-daemon.sh stop historyserver
2.9 集群访问页面
查看NameNode页面地址:
查看Yarn集群页面地址:
http://192.168.88.161:8088/cluster
查看MapReduce历史任务页面地址:
http://192.168.88.161:19888/jobhistory
2.9 主机名访问
1、打开Windows的C:\Windows\System32\drivers\etc目录下hosts文件
2、在hosts文件中添加以下域名映射
192.168.88.161 node1 node1.com.cn 192.168.88.162 node2 node2.com.cn 192.168.88.163 node3 node3.com.cn |
配置完之后,可以将以上地址中的IP替换为主机名即可访问,如果还不能访问,则需要重启Windows电脑,比如访问NameNode,可以使用http://node1:50070/
在hosts文件配置了后,先走hosts域名解析,如果hosts中的不存在,则会走dns域名解析服务器