计数排序
当输入的元素是 n 个 0 到 k 之间的整数时,它的运行时间是 Θ(n +k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。
由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。例如:计数排序是用来排序0到100之间的数字的最好的算法,但是它不适合按字母顺序排序人名。但是,计数排序可以用在基数排序中的算法来排序数据范围很大的数组。
算法的步骤如下:
- 找出待排序的数组中最大和最小的元素
- 统计数组中每个值为i的元素出现的次数,存入数组C的第i项
- 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
- 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1
public class CountSort { public static void countSort(int[] a, int[] b, int k) { int c[] = new int[k]; //初始化临时存储区c for (int i = 0; i < k; i++) { c[i] = 0; } //统计数组a中重复的次数,记录在c中 for (int j = 0; j< a.length; j++) { c[a[j]] = c[a[j]] + 1; } //统计数组C中小于或等于a[j]的元素个数,并重新组合数组C for (int i = 1; i < k; i++) { c[i] = c[i] + c[i - 1]; } /*将a数组中的元素按照顺序存储到b中 * * b的索引c[a[j]],每在此处放一值时,均要把 索引减去1 * * 每从数组c中取出一个值后,均要减少一个 */ for (int j = a.length - 1; j >= 0; j--) { b[c[a[j]]-1] = a[j]; c[a[j]] = c[a[j]] - 1; print(b); } } private static void print(int[] b) { for (int i = 0; i < b.length; i++) { System.out.print(b[i] + "\t"); } System.out.println(); } public static void main(String[] args) { int[] a = new int[] { 2, 5, 3, 0, 2, 3, 0, 3 }; int[] b = new int[8]; countSort(a, b, 6); for (int i = 0; i < 8; i++) { System.out.print(b[i] + "\t"); } } }
结果: