动态规划之矩阵链乘

本文介绍如何使用动态规划算法解决矩阵链乘问题。通过Java代码实现,找出给定序列(5,10,3,12,5,50,6)中矩阵链乘的最小代价,并输出最优加全括号。动态规划算法通过分解序列、计算子序列最小成本并结合成本来找到全局最优解。
摘要由CSDN通过智能技术生成

掌握并实现动态规划算法。

对比如维数为序列(5,10,3,12,5,50,6)的各矩阵。找出其矩阵链乘的一个最优加全括号。

实验思想:

一般地,可以用下列的递回算法求出最小成本:

  • 取得矩阵的序列且将其分成两个子序列。
  • 找出乘完每一子序列的最小成本。
  • 将成本加起来,并加上两个结果矩阵相乘的成本。
  • 在每一矩阵序列可分开的位置运作,并取其最小值。

publicclass Test {

    publicint[]p = {5,10,3,12,5,50,6};

    publicfinalintn =p.length - 1;

    publicdouble[][]m = newdouble[n][n];

    publicdouble[][]s = newdouble[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值