题目描述
我们可以把由 0 和 1 组成的字符串分为三类:全 0 串称为 B 串,全 1 串称为 I 串,既含 0 又含 1 的串则称为 F 串。
FBI 树是一种二叉树,它的结点类型也包括 F 结点,B 结点和 I 结点三种。由一个长度为 2N 的 01 串 S 可以构造出一棵 FBI 树 T,递归的构造方法如下:
- T 的根结点为 R,其类型与串 S 的类型相同;
- 若串 S 的长度大于 1,将串 S 从中间分开,分为等长的左右子串 S1 和 S2;由左子串 S1 构造 R 的左子树 T1,由右子串 S2 构造 R 的右子树 T2。
现在给定一个长度为 2N 的 01 串,请用上述构造方法构造出一棵 FBI 树,并输出它的后序遍历序列。
输入格式
第一行是一个整数 N(0≤N≤10),
第二行是一个长度为 2N 的 01 串。
输出格式
一个字符串,即 FBI 树的后序遍历序列。
输入输出样例
输入 #1复制
3 10001011
输出 #1复制
IBFBBBFIBFIIIFF
说明/提示
对于 40% 的数据,N≤2;
对于全部的数据,N≤10。
noip2004普及组第3题
下面为你提供一个 C++ 程序,用于解决构造 FBI 树并输出其后序遍历序列的问题。程序思路如下:
- 判断字符串类型:编写函数判断给定的 01 字符串是 B 串、I 串还是 F 串。
- 递归构造 FBI 树:依据输入的 01 字符串递归构建 FBI 树。
- 后序遍历:对构建好的 FBI 树进行后序遍历并输出结果。
#include <iostream>
#include <string>
using namespace std;
// 判断字符串类型
char getType(const string& s) {
bool hasZero = false, hasOne = false;
for (char c : s) {
if (c == '0') hasZero = true;
if (c == '1') hasOne = true;
if (hasZero && hasOne) return 'F';
}
return hasZero ? 'B' : 'I';
}
// 递归构造 FBI 树并进行后序遍历
void buildAndTraverse(const string& s) {
if (s.length() > 1) {
int mid = s.length() / 2;
// 递归处理左子串
buildAndTraverse(s.substr(0, mid));
// 递归处理右子串
buildAndTraverse(s.substr(mid));
}
// 输出当前节点类型
cout << getType(s);
}
int main() {
int n;
cin >> n;
string s;
cin >> s;
// 构建并遍历 FBI 树
buildAndTraverse(s);
cout << endl;
return 0;
}
代码解释
getType
函数:该函数接收一个 01 字符串,遍历字符串,若同时发现 0 和 1 则返回'F'
,若只有 0 则返回'B'
,若只有 1 则返回'I'
。buildAndTraverse
函数:这是一个递归函数,若字符串长度大于 1,就将其分成左右两部分,分别递归处理,之后输出当前字符串对应的节点类型。main
函数:读取输入的n
和 01 字符串,调用buildAndTraverse
函数构建并遍历 FBI 树,最后输出结果。
复杂度分析
- 时间复杂度:$O(2^N \times N)$,其中 $N$ 为输入的整数。每次递归都要遍历长度为 $2^k$ 的字符串,递归深度为 $N$。
- 空间复杂度:$O(N)$,主要是递归调用栈的空间。