主包写过,被拖出来写解释了555
题目描述
也许你早就知道阶乘的含义,N 阶乘是由 1 到 N 相乘而产生,如:
12!=1×2×3×4×5×6×7×8×9×10×11×12=479,001,600
12 的阶乘最右边的非零位为 6。
写一个程序,计算 N (1≤N≤5×107) 阶乘的最右边的非零位的值。
注意:10,000,000! 的末尾有 2499999 个零。
输入格式
仅一行包含一个正整数 N。
输出格式
一个整数,表示最右边的非零位的值。
输入输出样例
输入 #1复制
12
输出 #1复制
6
说明/提示
USACO Training Section 3.2
本题要求计算 N
阶乘最右边的非零位的值,由于 N
的范围较大(1 ≤ N ≤ 5×10^7
),直接计算阶乘会导致溢出,所以需要采用特殊方法。
核心思路是在计算阶乘的过程中,不断去掉末尾的 0,同时只保留结果的最后几位(因为只需要最右边的非零位),避免溢出。具体做法是,在累乘过程中,遇到 2 和 5 就将它们抵消(因为 2 和 5 相乘会产生 0),最后再将剩余的 2 乘回去,最后取结果的个位数。
以下是实现该功能的 C++ 代码:
#include <iostream>
using namespace std;
int main() {
int n;
cin >> n;
int ans = 1;
int two_count = 0, five_count = 0;
for (int i = 1; i <= n; ++i) {
int num = i;
// 计算 2 的个数
while (num % 2 == 0) {
two_count++;
num /= 2;
}
// 计算 5 的个数
while (num % 5 == 0) {
five_count++;
num /= 5;
}
// 累乘剩余的数,并只保留最后一位非零数
ans = (ans * num) % 10;
}
// 抵消 2 和 5
int remain_two = two_count - five_count;
// 将剩余的 2 乘回去
for (int i = 0; i < remain_two; ++i) {
ans = (ans * 2) % 10;
}
cout << ans << endl;
return 0;
}
代码解释
- 输入处理:读取正整数
N
。 - 初始化变量:
ans
用于存储最终结果,初始化为 1;two_count
和five_count
分别用于记录 2 和 5 的个数,初始化为 0。 - 遍历计算:从 1 到
N
遍历,对于每个数i
,先计算其中 2 和 5 的个数,将它们分别累加到two_count
和five_count
中,然后将去掉 2 和 5 后的数与ans
相乘,并取结果的个位数。 - 抵消 2 和 5:计算剩余的 2 的个数
remain_two
,将其乘回到ans
中。 - 输出结果:输出
ans
,即最右边的非零位的值。
复杂度分析
- 时间复杂度:$O(N \log N)$,主要是因为对于每个数
i
,需要 $O(\log i)$ 的时间来计算其中 2 和 5 的个数。 - 空间复杂度:$O(1)$,只使用了固定的额外变量。