题目描述
LHX 教主要来 X 市指导 OI 学习工作了。为了迎接教主,在一条道路旁,一群“Orz 教主 er”穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字。一旁的 Orzer 依次摆出“欢迎欢迎欢迎欢迎……”的大字,但是领队突然发现,另一旁穿着“教”和“主”字文化衫的 Orzer 却不太和谐。
为了简单描述这个不和谐的队列,我们用 j
替代“教”,z
替代“主”。而一个 j
与 z
组成的序列则可以描述当前的队列。为了让教主看得尽量舒服,你必须调整队列,使得 jz
子串尽量多。每次调整你可以交换任意位置上的两个人,也就是序列中任意位置上的两个字母。而因为教主马上就来了,时间仅够最多做 K 次调整(当然可以调整不满 K 次),所以这个问题交给了你。
输入格式
第一行,两个正整数 N,K,分别表示序列长度与最多交换次数。
第二行,一个长度为 N 的字符串,字符串仅由字母 j
与字母 z
组成,描述了这个序列。
输出格式
一个非负整数,为调整最多 K 次后最后最多能出现多少个 jz
子串。
输入输出样例
输入 #1复制
5 2 zzzjj
输出 #1复制
2
说明/提示
【样例说明】
第 1 次交换位置 1 上的 z
和位置 4 上的 j
,变为 jzzzj
;
第 2 次交换位置 4 上的 z
和位置 5 上的 j
,变为 jzzjz
。
最后的串有 2 个 jz
子串。
【数据规模与约定】
对于 10% 的数据,有 N≤10;
对于 30% 的数据,有 K≤10;
对于 40% 的数据,有 N≤50;
对于 100% 的数据,有 1≤N≤500,1≤K≤100。
dp 题,不过状态定义比较难想。
定义 dpi,j,k,0 表示前 i 个字符中改变 j 个 j
,改变 k 个 z
,且第 i 个字符为 j
能调整出的最多的 jz
的个数。
定义 dpi,j,k,1 表示前 i 个字符中改变 j 个 j
,改变 k 个 z
,且第 i 个字符为 z
能调整出的最多的 jz
的个数。
动态转移方程:
-
若 si=
j
,dpi,j,k,0=max(dpi−1,j,k,0,dpi−1,j,k,1)- 若 j≥1,则 dpi,j,k,1=max(dpi−1,j−1,k,0+1,dpi−1,j−1,k,1)
-
若 si=
z
,dpi,j,k,1=max(dpi−1,j,k,0+1,dpi−1,j,k,1)- 若 k≥1,则 dpi,j,k,0=max(dpi−1,j,k−1,0,dpi−1,j,k−1,1)
主要看 dpi,j,k,1 的动态转移方程,因为其较为特殊,它的前面如果接上 z
,就成为了一个字符组 jz
,个数增加一,所以是如上的动态转移方程。
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=5e2+5,M=1e2+5;
int dp[N][M][M][2];
int main() {
memset(dp,-0x3f,sizeof(dp));
dp[0][0][0][1]=0;
int n,m,ans=0;
string s;
cin>>n>>m>>s;
for(int i=n;i>=1;i--) s[i]=s[i-1];
for(int i=1;i<=n;i++) {
for(int j=0;j<=m;j++) {
for(int k=0;k<=m;k++) {
if(s[i]=='j') {
dp[i][j][k][0]=max(dp[i-1][j][k][0],dp[i-1][j][k][1]);
if(j>=1) dp[i][j][k][1]=max(dp[i-1][j-1][k][0]+1,dp[i-1][j-1][k][1]);
}
else {
dp[i][j][k][1]=max(dp[i-1][j][k][0]+1,dp[i-1][j][k][1]);
if(k>=1) dp[i][j][k][0]=max(dp[i-1][j][k-1][0],dp[i-1][j][k-1][1]);
}
}
}
}
for(int i=0;i<=m;i++) ans=max(ans,max(dp[n][i][i][0],dp[n][i][i][1]));
cout<<ans;
return 0;
}