HIVE大数据平台SQL优化分享

相信很多小伙伴在面试的时候,必然跳不过去的一个问题就是SQL脚本的优化,这是很多面试官爱问的问题,也是可以证明你实力进阶的一个重要的能力。

下面给大家分享一个重量级的大数据行业sql技能---hive大数据平台SQL优化。

此文章是大数据平台运维组从多维度参数(CPU,内存,运行时长等)筛选出TOP任务,联合数据开发人员进行优化,最终出具优化方案优化跑批作业的业务逻辑,SQL逻辑等,并跟进方案落地和报告整理。

此文章从优化介绍,优化场景,案例实战三个方面循序渐进讲解。

一,优化介绍

1,大数据平台SQL优化的背景,以及采取的措施

2,优化效果概述

这个效果还是蛮理想的,也说明了在项目中sql优化是一项重要的技能之一,也是一个大数据开发人员进阶必备技能。

3,版本信息与名词

在分享SQL优化之前,先了解一下部分名词的含义。

二,优化场景

1,主要的优化场景

1.1,多余分区冗余计算

解决方法:

1.2,历史静态数据重复计算

解决方法>步骤1:优化前把历史结果表落地,再计算出新增结果表

解决方法>步骤2:把新增结果表数据合并进入历史结果表。

---注意,这里为什

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不被定义喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值