因为在做比赛用到这方面的知识,应用是最大的动力,下面是自己的一点总结, 将从两方面展开:
(1)最懒的融合---直接对几个模型的结果(即提交文件)进行融合。有下面几种方法可以尝试:
· 投票法。例如得到了a、b、c、d、e五个模型对一个样本的分类结果,那么可以采取投票法,如果超过半数的模型的结果是正例,则我们得出结论该样本是正例。提高分类准确率方面,少数服从多数有很重要的作用。
为什么投票法可以减少错误的概率?
假设每个模型的结果发生错误的概率都是0.4,则三个(刚超过半数的模型个数)发生错误的概率为0.4^3*0.6^2*10=0.23,比单个模型的错误率要低。