初识模型融合方法(图解)

本文介绍了模型融合技术,包括投票法、加权投票、平均法、排名平均法和交集法等简单融合方式,以及深入探讨了Stacking的详细步骤,强调了其降低泛化误差的作用。同时提到了Blending作为另一种融合策略,通过保留一部分训练数据作为验证集,训练第二阶段模型。
摘要由CSDN通过智能技术生成

因为在做比赛用到这方面的知识,应用是最大的动力,下面是自己的一点总结, 将从两方面展开:

(1)最懒的融合---直接对几个模型的结果(即提交文件)进行融合。有下面几种方法可以尝试:

·       投票法。例如得到了a、b、c、d、e五个模型对一个样本的分类结果,那么可以采取投票法,如果超过半数的模型的结果是正例,则我们得出结论该样本是正例。提高分类准确率方面,少数服从多数有很重要的作用。

为什么投票法可以减少错误的概率?

假设每个模型的结果发生错误的概率都是0.4,则三个(刚超过半数的模型个数)发生错误的概率为0.4^3*0.6^2*10=0.23,比单个模型的错误率要低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值