机器学习实战学习笔记(七)预测数值型数据:回归

本文详细介绍了回归分析在预测数值型数据中的应用,包括线性回归、局部加权线性回归、岭回归和lasso等方法。通过具体实例展示了如何使用这些回归算法进行预测,并探讨了偏差和方差的平衡问题。
摘要由CSDN通过智能技术生成

PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)
在这里插入图片描述

1 用线性回归找到最佳拟合直线

                                             线性回归
	优点:结果易于理解,计算上不复杂。
	缺点:对非线性的数据拟合不好。
	适用数据类型:数值型和标称型数据。

  假定输入数据存放在矩阵 X X X中,而回归系数存放在向量 w w w中。那么对于给定的数据 X 1 X_1 X1,预测结果将会通过 Y 1 = X 1 T w Y_1=X_1^Tw Y1=X1Tw给出。我们常用的方法极速找出使误差最小的 w w w,误差是指预测y值和真实y值之间的差值,因为该误差的简单累计有正负差值抵消,所以采用平方误差。
  平方误差: ∑ i = 1 m ( y i − x i T w ) 2 \sum_{i=1}^{m}\left(y_{i}-x_{i}^{\mathrm{T}} w\right)^{2} i=1m(yixiTw)2
  用矩阵表示还可以写作 ( y − X w ) T ( y − X w ) (y-Xw)^T(y-Xw) (yXw)T(yXw),对 w w w求导得: − 2 X T ( y − X w ) -2X^T(y-Xw) 2XT(yXw)
  这个式子的求导其实是有一定的技巧,观察其形式为平方形式,然后是标量对于向量 w w w的求导,其结果必定与 w w w的维度相同,然后就可以写出。当然也可以按部就班的求导,下面详细介绍这种类型的矩阵求导方法。

1.1 求导详解

  关于上面那个式子求导(标量对向量求导),维基百科中有详细的介绍,放上两个链接:维基百科矩阵运算中的求导法则等和[通过一个例子快速上手矩阵求导]。(https://blog.csdn.net/nomadlx53/article/details/50849941)
下图是在维基百科中截取的标量关于向量求导的表格:
在这里插入图片描述

问题

∂ ( y − X w ) T ( y − X w ) ∂ w \frac{\partial(y-X w)^{T}(y-X w)}{\partial w} w(yXw)T(yXw)
  说明: y 、 w y、w yw是列向量(一般说向量默认列向量), X X X为矩阵

式子演化

∂ ( y T y − y T X w − w T X T y + w T X T X w ) ∂ w \frac{\partial\left(y^{T} y-y^{T} X w-w^{T} X^{T} y+w^{T} X^{T} X w\right)}{\partial w} w(yTyyTXwwTXTy+wTXTXw)
∂ y T y ∂ w − ∂ y T X w ∂ w − ∂ w T X T y ∂ w + ∂ w T X T X w ∂ w \frac{\partial y^{T} y}{\partial w}-\frac{\partial y^{T} X w}{\partial w}-\frac{\partial w^{T} X^{T} y}{\partial w}+\frac{\partial w^{T} X^{T} X w}{\partial w} wyTywyTXwwwTXTy+wwTXTXw

求导
  • ∂ y T y ∂ w \frac{\partial y^{T} y}{\partial w} wyTy求导: ∂ y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值