(POJ - 2456 )Aggressive cows

(POJ - 2456 )Aggressive cows

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 15529 Accepted: 7441

Description

Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,…,xN (0 <= xi <= 1,000,000,000).

His C (2 <= C <= N) cows don’t like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?

Input

  • Line 1: Two space-separated integers: N and C

  • Lines 2..N+1: Line i+1 contains an integer stall location, xi

Output

  • Line 1: One integer: the largest minimum distance

Sample Input

5 3
1
2
8
4
9

Sample Output

3
Hint

OUTPUT DETAILS:

FJ can put his 3 cows in the stalls at positions 1, 4 and 8, resulting in a minimum distance of 3.

Huge input data,scanf is recommended.

题目大意:一条直线上有n个牛棚,牛棚的位置为xi,每个牛棚只能放一头牛。现有c头牛要放入牛棚,要是两头牛之间的距离尽可能大。

思路:先对牛棚位置进行排序,则两头牛之间的最小距离为1,最大距离为x[n-1]-x[0],然后在这个区间二分答案即可。

#include<cstdio>
#include<algorithm>
using namespace std;

const int maxn=100005;
int a[maxn];
int n,c;

bool check(int x)
{
    int cnt=1,tmp=a[0];
    for(int i=0;i<n;i++)
    {
        if(a[i]-tmp>=x)
        {
            cnt++;
            tmp=a[i];
        }
    }
    if(cnt>=c) return true;//答案偏小了
    else return false; 
}

int main()
{
    while(scanf("%d%d",&n,&c)!=EOF)
    {
        for(int i=0;i<n;i++) scanf("%d",a+i);
        sort(a,a+n);
        int lo=1,hi=a[n-1]-a[0],mid,ans;
        while(lo<=hi)
        {
            mid=(lo+hi)>>1;
            if(check(mid))
            {
                ans=mid; 
                lo=mid+1;
            }
            else hi=mid-1;
        }
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值