flinksql 更改并发度的情况下,如何保证精准一次

一个任务发现延迟,并且 每个subtask的延迟程度不同 假设source(kafka/sls)有 30个subtask,最慢的延迟1小时,最快的延迟5分钟,作业消费方式是timestamp,且此时需要修改有状态的并行度(即无法通过暂停恢复),下游存储没法update(kafka/odps这类),那 这个作业要如何操作才能在调整资源停止作业重新启动的同时保证下游收到的结果准确。
1、把timestamp的方式更改成groupid方式(核心要保证groupid不和其他应用共用),并点击上线
2、点击更多: 停止并执行一次checkpoint
3、重新启动任务,就按最新的资源调整开始消费了。


 

该问题核心的是把消费者的offset从timestamp改成group0ffset的模式。

 

 

 

 

该问题核心的是把消费者的offset从timestamp改成group0ffset的模式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值