题目描述
峰值元素是指其值严格大于左右相邻值的元素。
给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。
你可以假设 nums[-1] = nums[n] = -∞ 。
你必须实现时间复杂度为 O(log n) 的算法来解决此问题。
示例 1:
输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。
示例 2:
输入:nums = [1,2,1,3,5,6,4]
输出:1 或 5
解释:你的函数可以返回索引 1,其峰值元素为 2;
或者返回索引 5, 其峰值元素为 6。
提示:
1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
对于所有有效的 i 都有 nums[i] != nums[i + 1]
解题思路
二分查找,查找条件为(mid == nums.length - 1 || nums[mid] > nums[mid + 1]) && (mid == 0 || nums[mid]>nums[mid-1])
。难度中等。
class Solution {
public int findPeakElement(int[] nums) {
int low=0,high=nums.length-1,mid,ans=-1;
while (low<=high){
mid=(low+high)/2;
if((mid == nums.length - 1 || nums[mid] > nums[mid + 1]) && (mid == 0 || nums[mid]>nums[mid-1])){
ans=mid;
break;
}
else if(mid == nums.length - 1 || nums[mid] > nums[mid + 1]) high=mid-1;
else low=mid+1;
}
return ans;
}
}