神经网络损失函数nan的一个疑问

 

cross_entropy =-tf.reduce_sum(y_*tf.log(y))#第一个

cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(y,1e-8,tf.reduce_max(y)))) #第二个

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),1))#第三个


当我使用第一个的时候 训练的损失函数根本降不下去,输出是NAN

即使是第二个方法  我把y_可能出现0的情况给忽略了 也降不下去

但是使用第三个方法瞬间就work了 

 

很奇怪  特此记录

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值