《MICCAI2019》Learning Cross-Modal Deep Representations for Multi-Modal MR Image Segmentation

传统CNN的多模态MR图像分析通常是一层或者多层的简单融合(通过简单的求和或者拼接)
针对上述问题,本文的创新点:
在监督的情况下进行图像的融合,即根据不同模式的信息来进行特征选择
具体步骤:挑选不同模式中对预测结果贡献程度最大的作为主模式,并且以此监督其他模式下的信息选择

背景1:

医学图像分析领域:
单模态:
基于卷积神经网络:
1.R-CNN(像素级的给分类任务,通过滑动窗口对每个像素进行分类)
2.FCNN(避免繁琐和内存不足额R-CNN,通过生成热图输出直接对输入图像进行分割)
3.U-Net(针对生物医学图像分割)

多模态:不同成像方式的信息融合
在这里插入图片描述
1.早期融合:输入阶段或者低水平特征阶段(a)
方法:输入阶段为单路径网络
低水平特征阶段为多路径网络
2.后期融合:高水平特征阶段,预测层之前,预测层中(b,c)
方法:多路径网络
3.多层融合:(d)
后期或者多层融合比早期融合能够产生更好的分割效果,并且后期或者多层融合采用多路径网络实现,并且最开始是由RGB-D图像需要将深度信息引入所得

网络模型:
FuseNet
encoder: VGG-16层模型

论文基于此进行修改将VGG-16修改为U-Net,构建成FuseOrigin-UNet,并且在此基础上为了减轻网络的训练参数, encoder中每一层的卷积核与U-Net相比都减半,从而得到文章中所用的基本网络模型FuseUNet

summation:对多模态输出的特征进行简单的求和或者叠加,思想与ResNet中的add层一致,即做值的叠加而不改变通道数
而FuseUNet所用的为Concatenation:改变通道数,不改变值

背景2:
不同模态对于病变的检测侧重点不同,存在局限性:
1.contrast-enhanced T1-weight (T1C) MRI:检测乳腺病变具有很高的敏感性,检测乳腺肿块具有较高的敏感性和较低的特异性,即与肿块无关的区域比如脏器,腺体组织等也被增强了
2.T2-weighted (T2W) MRI:能够减少病变中假阳性的结果,能够区分在所有增强的区域中正确区分出肿块的位置
因此需要考虑不同模式对于病变信息的检测

针对乳房肿块分割难点:
肿块大小和形状难以确定,尤其是边界不确定的针状肿块

网络模型:
核心思想:teacher-student network + activation-based attention transfer

监督式跨模态学习+注意力机制(attention mechanism):
在这里插入图片描述
input1(主模态):T1C
input2(辅助模态):T2W
其中主模态产生监督信息,通过spatial attention来提取监督信息(input:主模态的特征;output:权值热图,用于指导主模态和辅助模态的信息选择)

总结:
文章提出FuseUnet来对T1C和T2W的MRI图像进行多路径网络处理,其中T1C为主模态,T2W为辅助模态,并且通过在特征融合层添加spatial attention来指导主模态和辅助模态之间的权重配置,但对于teacher-student Network的关键想法,即利用深层网络来训练浅层网络的概念在此文章上的目前发现

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值