蓝桥杯 结果填空 正六面体染色 Burnside引理

博客介绍了如何利用伯恩赛德引理解决正六面体用4种颜色染色的不同样式计数问题。通过分析立方体的旋转群及其对染色组合的影响,计算出不同染色方式的数量,得出结论为240种。内容涉及到群论和离散数学的相关知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正六面体用4种颜色染色。

共有多少种不同的染色样式?

要考虑六面体可以任意旋转、翻转。

 

参考答案:

240


可以想象,这道题如果编程的话,代码不会很少,关键是也没啥思路,其实组合数学早就给我们提供了数学工具,就是burnside引理(已下内容参考维基百科)


伯恩赛德引理

伯恩赛德引理Burnside's lemma),也叫伯恩赛德计数定理Burnside's counting theorem),柯西-弗罗贝尼乌斯引理Cauchy-Frobenius lemma)或轨道计数定理orbit-counting theorem),是群论中一个结果,在考虑对称的计数中经常很有用。该结论被冠以多个人的名字,其中包括威廉·伯恩赛德

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值