二叉搜索树的后序遍历

//描述:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历。
// 如果是,则输出Yes,否则输出NO。假设输入的数组的任意两个数字都互不相同。
//1-样例输入:5 7 6 9 11 10 8
//1-样例输出:Yes
//2-样例输入:7 4 6 5
//2-样例输出:No

首先要知道二叉搜索树的定义:
或者是一棵空树,或者具有以下性质的二叉树:
1) 若它的左子树不空,则左子树所有节点的值均小于它的根节点的值;
2)若它的右子树不空,则右子树所有节点的值均大于它的根节点的值;
3)它的左右子树也分别为二叉排序树。

后序遍历的定义为:
L–>R–>N

满足后序遍历的二叉搜索树 数列可以分为三段:
小于根、大于根,根
分别对应的左、右子树又满足上述规律。适用于递归算法

算法:
找到左右子树的分界点,再继续递归判断,直到不满足条件或者判断完成退出。
代码:

    if (low>=high)
         return 1; //空的二叉树或者只有根

    for (i=low;dat[i]<root;i++);  //判断左子树终点  大于i的部分除了根节点,为右子树
    high1=i;
    while(i<high)   
    {
        if (dat[i]<root)//右子树部分要都大于根节点才满足条件
            return 0;
        i++;  //右子树满足条件,继续判断
    }
    flag=Jude_AfterBinaryTree(dat,1,high1-1); //判断左子树
    if (flag)
        flag=Jude_AfterBinaryTree(dat,high1,high-1); //判断右子树

    return flag;

其中low和high表示每次递归时,数组判断的开始与结束位置;high1记录了判断中途左右子树的分界点;
root为根节点的大小

程序运行结果:
这里写图片描述
这里写图片描述

2015/10/26 程序改进:


    if (low>=high)
         return 1; //只有根
    else{
        int i,j;
        for (i=low;i<high;i++)  //判断左子树终点  大于i的部分除了根节点,为右子树
            if (dat[i]>=dat[high])
                break;

        for (j=i;j<high;j++)
            if (dat[j]<dat[high])
                return 0;
        return Jude_AfterBinaryTree(low,i-1)*Jude_AfterBinaryTree(i,high-1);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值