//描述:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历。
// 如果是,则输出Yes,否则输出NO。假设输入的数组的任意两个数字都互不相同。
//1-样例输入:5 7 6 9 11 10 8
//1-样例输出:Yes
//2-样例输入:7 4 6 5
//2-样例输出:No
首先要知道二叉搜索树的定义:
或者是一棵空树,或者具有以下性质的二叉树:
1) 若它的左子树不空,则左子树所有节点的值均小于它的根节点的值;
2)若它的右子树不空,则右子树所有节点的值均大于它的根节点的值;
3)它的左右子树也分别为二叉排序树。
后序遍历的定义为:
L–>R–>N
满足后序遍历的二叉搜索树 数列可以分为三段:
小于根、大于根,根
分别对应的左、右子树又满足上述规律。适用于递归算法
算法:
找到左右子树的分界点,再继续递归判断,直到不满足条件或者判断完成退出。
代码:
if (low>=high)
return 1; //空的二叉树或者只有根
for (i=low;dat[i]<root;i++); //判断左子树终点 大于i的部分除了根节点,为右子树
high1=i;
while(i<high)
{
if (dat[i]<root)//右子树部分要都大于根节点才满足条件
return 0;
i++; //右子树满足条件,继续判断
}
flag=Jude_AfterBinaryTree(dat,1,high1-1); //判断左子树
if (flag)
flag=Jude_AfterBinaryTree(dat,high1,high-1); //判断右子树
return flag;
其中low和high表示每次递归时,数组判断的开始与结束位置;high1记录了判断中途左右子树的分界点;
root为根节点的大小
程序运行结果:
2015/10/26 程序改进:
if (low>=high)
return 1; //只有根
else{
int i,j;
for (i=low;i<high;i++) //判断左子树终点 大于i的部分除了根节点,为右子树
if (dat[i]>=dat[high])
break;
for (j=i;j<high;j++)
if (dat[j]<dat[high])
return 0;
return Jude_AfterBinaryTree(low,i-1)*Jude_AfterBinaryTree(i,high-1);