AtCoder Beginner Contest 245 A~E 题解

本文提供了AtCoder比赛245场次A至E题目的详细解析,包括题目大意、输入输出格式、样例分析及代码实现。涵盖从简单的比较时间到复杂的多项式除法与贪心算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A - Good morning

题目大意

在同一天里,Takahashi在 A A A B B B分起床,Aoki在 C C C D D D 1 1 1秒起床,请问谁起床更早?

0 ≤ A , C < 24 0\le A,C<24 0A,C<24
0 ≤ B , D < 60 0\le B,D<60 0B,D<60

输入格式

A   B   C   D A~B~C~D A B C D

输出格式

输出起得更早的人的名字(TakahashiAoki)。

样例

A A A B B B C C C D D D输出
7 7 7 0 0 0 6 6 6 30 30 30Aoki
7 7 7 30 30 30 7 7 7 30 30 30Takahashi
0 0 0 0 0 0 23 23 23 59 59 59Takahashi

分析

思路很明显,直接判断 ( A , B ) ≤ ( C , D ) (A,B)\le(C,D) (A,B)(C,D)是否成立即可。

代码

#include <cstdio>
using namespace std;

int main()
{
	int a, b, c, d;
	scanf("%d%d%d%d", &a, &b, &c, &d);
	puts((a == c? b <= d: a < c)? "Takahashi": "Aoki");
	return 0;
}

B - Mex

题目大意

给定整数序列 A = ( A 1 , … , A N ) A=(A_1,\dots,A_N) A=(A1,,AN)。求最小的不在 A A A中的自然数。

1 ≤ N ≤ 2000 1\le N\le 2000 1N2000
0 ≤ A i ≤ 2000 0\le A_i\le 2000 0Ai2000

输入格式

N N N
A 1   …   A N A_1~\dots~A_N A1  AN

输出格式

输出一行,即最小的不在 A A A中的自然数。

样例

略,请自行前往AtCoder查看

分析

由于题面中有限制 0 ≤ A i ≤ 2000 0\le A_i\le 2000 0Ai2000,所以我们直接开一个数组记录 [ 0 , 2001 ] [0,2001] [0,2001]中每个数是否出现过即可。
本题方法很多,这里介绍的是最快的算法,时间复杂度 O ( N ) \mathcal O(N) O(N)

代码

#include <cstdio>
using namespace std;

bool used[2005];

int main()
{
	int n;
	scanf("%d", &n);
	while(n--)
	{
		int a;
		scanf("%d", &a);
		used[a] = true;
	}
	int i = -1;
	while(used[++i]);
	printf("%d\n", i);
	return 0;
}

C - Choose Elements

题目大意

给定两个长度为 N N N的整数序列 A = ( A 1 , … , A N ) A=(A_1,\dots,A_N) A=(A1,,AN) B = ( B 1 , … , B N ) B=(B_1,\dots,B_N) B=(B1,,BN)
问是否存在序列 X = ( X 1 , … , X N ) X=(X_1,\dots,X_N) X=(X1,,XN),满足如下条件:

  • X i = A i X_i=A_i Xi=Ai X i = B i X_i=B_i Xi=Bi
  • ∣ X i − X i + 1 ∣ ≤ K |X_i-X_{i+1}|\le K XiXi+1K,其中 1 ≤ i < N 1\le i<N 1i<N

1 ≤ N ≤ 2 × 1 0 5 1\le N\le 2\times 10^5 1N2×105
1 ≤ K ≤ 1 0 9 1\le K\le 10^9 1K109
1 ≤ A i , B i ≤ 1 0 9 1\le A_i,B_i\le 10^9 1Ai,Bi109

输入格式

N   K N~K N K
A 1   …   A N A_1~\dots~A_N A1  AN
B 1   …   B N B_1~\dots~B_N B1  BN

输出格式

如果存在符合全部条件的 X X X,输出Yes;否则,输出No

样例

略,请自行前往AtCoder查看

分析

好家伙,C题都要用dp……
本题普通的方法貌似不太好做,因此我们考虑 DP \text{DP} DP
f ( i ) = X i f(i)=X_i f(i)=Xi选择能否等于 A i A_i Ai g ( i ) = X i g(i)=X_i g(i)=Xi能否等于 B i B_i Bi
然后状态转移方程就简单了,详见代码。

代码

#include <cstdio>
#define maxn 200005
using namespace std;

int a[maxn], b[maxn];
bool f[maxn], g[maxn];

int main()
{
	int n, k;
	scanf("%d%d", &n, &k);
	for(int i=0; i<n; i++)
		scanf("%d", a + i);
	for(int i=0; i<n; i++)
		scanf("%d", b + i);
	f[0] = g[0] = true;
#define set(x, y, z) x |= y - z <= k && z - y <= k
	for(int i=1; i<n; i++)
	{
		if(f[i - 1])
			set(f[i], a[i - 1], a[i]),
			set(g[i], a[i - 1], b[i]);
		if(g[i - 1])
			set(f[i], b[i - 1], a[i]),
			set(g[i], b[i - 1], b[i]);
	}
	puts(f[n - 1] || g[n - 1]? "Yes": "No");
	return 0;
}

注:本题还有一种很奇怪的解法,就是直接判断相邻的四种连接方式是否有至少一种能连通,比如#30453703,如果有大佬能证明这种方法的正确性,欢迎在评论区留言告诉我,谢谢!


D - Polynomial division

题目大意

我们有三个多项式
A ( x ) = ∑ i = 0 N A i X i B ( x ) = ∑ i = 0 M B i X i C ( x ) = ∑ i = 0 N + M B i X i A(x)=\sum_{i=0}^N A_iX^i\\ B(x)=\sum_{i=0}^M B_iX^i\\ C(x)=\sum_{i=0}^{N+M} B_iX^i A(x)=i=0NAiXiB(x)=i=0MBiXiC(x)=i=0N+MBiXi
已知 A 0 , … , A N A_0,\dots,A_N A0,,AN C 0 , … , C N C_0,\dots,C_N C0,,CN A ( x ) × B ( x ) = C ( x ) A(x)\times B(x)=C(x) A(x)×B(x)=C(x) x ∈ R x\in R xR),求 B 0 , … , B M B_0,\dots,B_M B0,,BM
换句话说,给定多项式 A A A C C C每一项的系数,求多项式 B = C A B=\frac C A B=AC

1 ≤ N , M < 100 1\le N,M<100 1N,M<100
∣ A i ∣ ≤ 100 |A_i|\le 100 Ai100
∣ C i ∣ ≤ 1 0 6 |C_i|\le 10^6 Ci106
A N ≠ 0 , C N + M ≠ 0 A_N\ne0,C_{N+M}\ne0 AN=0,CN+M=0
题目保证存在合法的 ( B 0 , … , B M ) (B_0,\dots,B_M) (B0,,BM)

输入格式

N   M N~M N M
A 0   …   A N A_0~\dots~A_N A0  AN
C 0   …   C N + M C_0~\dots~C_{N+M} C0  CN+M

输出格式

输出 B 0 , … , B M B_0,\dots,B_M B0,,BM,用空格分隔。

样例

略,请自行前往AtCoder查看

分析

本题可以直接模拟多项式的大除法运算,运算时只需记录系数即可。

代码

#include <cstdio>
#define maxn 105
using namespace std;

int a[maxn], b[maxn], c[maxn << 1];

int main()
{
	int n, m;
	scanf("%d%d", &n, &m);
	for(int i=0; i<=n; i++) scanf("%d", a + i);
	for(int i=0; i<=n+m; i++) scanf("%d", c + i);
	for(int i=m; i>=0; i--) // NOTE: 必须倒推!
	{
		b[i] = c[n + i] / a[n];
		for(int j=0; j<=n; j++)
			c[i + j] -= a[j] * b[i];
	}
	for(int i=0; i<=m; i++)
		printf("%d ", b[i]);
	return 0;
}

E - Wrapping Chocolate

题目大意

我们有 N N N块巧克力和 M M M个盒子。第 i i i块巧克力长 A i A_i Ai厘米,宽 B i B_i Bi厘米;第 i i i个盒子长 C i C_i Ci厘米,宽 D i D_i Di厘米。
问是否能把巧克力分别装在盒子里,使其满足如下条件:

  • 每个盒子里只能有一块巧克力。
  • 当我们将第 i i i块巧克力放入第 j j j个盒子里时, A i ≤ C j A_i\le C_j AiCj B i ≤ D j B_i\le D_j BiDj必须都成立。

1 ≤ N ≤ M ≤ 2 × 1 0 5 1\le N\le M\le 2\times10^5 1NM2×105
1 ≤ A i , B i , C i , D i ≤ 1 0 9 1\le A_i,B_i,C_i,D_i\le 10^9 1Ai,Bi,Ci,Di109

输入格式

N   M N~M N M
A 1   …   A N A_1~\dots~A_N A1  AN
B 1   …   B N B_1~\dots~B_N B1  BN
C 1   …   C N C_1~\dots~C_N C1  CN
D 1   …   D N D_1~\dots~D_N D1  DN

输出格式

如果有合法的方法,输出Yes;否则,输出No

分析

本题可以考虑如下贪心算法:

  1. 将所有的巧克力和盒子放入一个数组,按长度 A i A_i Ai C i C_i Ci的降序排序,长度相等的把盒子排在前面。
  2. 准备好一个空序列 S = ( ) S=() S=(),按如下规则遍历每个元素:
    • 如果当前遍历的是一个盒子 ( C i , D i ) (C_i,D_i) (Ci,Di)
      D i D_i Di加入 S S S
    • 如果当前遍历的是一块巧克力 ( A i , B i ) (A_i,B_i) (Ai,Bi)
      S S S中删除不超过 B i B_i Bi的最小元素,如果没有元素可删除,输出No
  3. 如果顺利地遍历了所有元素,输出Yes;否则,输出No

本算法的时间复杂度是 O ( M N ) \mathcal O(MN) O(MN),但经过multiset优化后可降为 O ( ( M + N ) log ⁡ ( M + N ) \mathcal O((M+N)\log(M+N) O((M+N)log(M+N),具体实现详见代码。

代码

#include <cstdio>
#include <set>
#include <algorithm>
using namespace std;

struct Item {
	int w, h;
	bool type;
	inline bool operator <(const Item& i2) const {
		return w == i2.w? type > i2.type: w > i2.w;
		//                ^^^^^^^^^^^^^^
		// 注意sort必须有严格顺序,一开始我这里写成了type==1导致RE,详见:
		// https://atcoder.jp/contests/abc245/submissions/30526563
	}
} v[400005];

int main()
{
	int n, m;
	scanf("%d%d", &n, &m);
	// Chocolate
	for(int i=0; i<n; i++) scanf("%d", &v[i].w);
	for(int i=0; i<n; i++) scanf("%d", &v[i].h);
	// Box
	m += n;
	for(int i=n; i<m; i++) scanf("%d", &v[i].w);
	for(int i=n; i<m; i++) scanf("%d", &v[i].h);
	for(int i=n; i<m; i++) v[i].type = 1;
	// Algorithm
	sort(v, v + m);
	multiset<int> s;
	for(int i=0; i<m; i++)
	{
		const Item& it = v[i];
		if(it.type) s.insert(it.h); // Box
		else
		{
			auto itr = s.lower_bound(it.h);
			if(itr == s.end())
			{
				puts("No");
				return 0;
			}
			s.erase(itr);
		}
	}
	puts("Yes");
	return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值