AtCoder Beginner Contest 254 A~E 题解

46 篇文章 7 订阅
43 篇文章 6 订阅

A - Last Two Digits

题目大意

给定正整数 N N N,求 N N N的后两位。
100 ≤ N ≤ 999 100\le N\le 999 100N999

输入格式

N N N

输出格式

输出 N N N的后两位,注意输出可能有前导0

样例

N N N输出
254 254 25454
101 101 10101

分析

题目已经规定 N N N是三位数,因此无需使用整数输入,直接将输入看成字符串,输出后两位即可。

代码

#include <cstdio>
using namespace std;

int main()
{
	getchar();
	putchar(getchar());
	putchar(getchar());
	return 0;
}

B - Practical Computing

题目大意

输出 N N N个整数序列 A 0 , … , A N − 1 A_0,\dots,A_{N-1} A0,,AN1。它们按如下定义:

  • A i A_i Ai的长为 i + 1 i+1 i+1
  • A i A_i Ai的第 j + 1 j+1 j+1个元素记为 a i , j a_{i,j} ai,j 0 ≤ j ≤ i < N 0\le j\le i<N 0ji<N),即:
    • j = 0 j=0 j=0 j = i j=i j=i时, a i , j = 1 a_{i,j}=1 ai,j=1
    • 否则, a i , j = a i − 1 , j − 1 + a i − 1 , j a_{i,j}=a_{i-1,j-1}+a_{i-1,j} ai,j=ai1,j1+ai1,j

1 ≤ N ≤ 30 1\le N\le 30 1N30

输入格式

N N N

输出格式

输出 N N N行。第 i i i行上有 A i − 1 A_{i-1} Ai1中的 i i i个数,用空格分隔。

样例

样例输入1

3

样例输出1

1
1 1
1 2 1

样例输入2

10

样例输出2

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

分析

其实不用读题,看一眼样例,是不是很眼熟?没错,就是著名的杨辉三角
不知道也没关系(不过应该也没人不知道),直接按题目要求( i , j i,j i,j正序)依次计算即可。时间复杂度 O ( n 2 ) \mathcal O(n^2) O(n2),空间复杂度 O ( n ) \mathcal O(n) O(n) O ( n 2 ) \mathcal O(n^2) O(n2)。详见代码 1 , 2 1,2 1,2

继续考虑,杨辉三角中 a i , j = C j i a_{i,j}=C_j^i ai,j=Cji,所以可以用 O ( 1 ) \mathcal O(1) O(1)的空间计算,时间不变,代码待会补。

代码

  • 代码 1 1 1(普通方法+无优化+cin/cout 7 ms  3604 KB 7\text{ms}~3604\text{KB} 7ms 3604KB
    时间: O ( n 2 ) \mathcal O(n^2) O(n2)
    空间: O ( n 2 ) \mathcal O(n^2) O(n2)
    难度:
    #include <iostream>
    using namespace std;
    
    int arr[35][35];
    
    int main()
    {
       int n;
       cin >> n;
       for (int i = 0; i < n; i++)
       {
           arr[i][0] = 1;
           arr[i][i] = 1;
       }
       for (int i = 2; i < n; i++)
       {
           for (int j = 1; j < i; j++)
           {
               arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j];
           }
       }
       for (int i = 0; i < n; i++)
       {
           for (int j = 0; j <= i; j++)
           {
               cout << arr[i][j] << " ";
           }
           cout << endl;
       }
       return 0;
    }
    
  • 代码 2 2 2(普通方法+滚动表+scanf/printf 6 ms  1656 KB 6\text{ms}~1656\text{KB} 6ms 1656KB
    时间: O ( n 2 ) \mathcal O(n^2) O(n2)
    空间: O ( n ) \mathcal O(n) O(n)
    难度:中低
    #include <cstdio>
    using namespace std;
    
    int a[35];
    
    int main()
    {
       int n;
       scanf("%d", &n);
       a[0] = 1, puts("1");
       for(int i=1; i<n; i++)
       {
       	putchar('1');
       	for(int j=i-1; j>0; j--)
       		a[j] += a[j - 1];
       	for(int j=1; j<i; j++)
               printf(" %d", a[j]);
           a[i] = 1, puts(" 1");
       }
       return 0;
    }
    

C - K Swap

题目大意

给定长度为 N N N的序列 A = ( a 1 , a 2 , … , a N ) A=(a_1,a_2,\dots,a_N) A=(a1,a2,,aN)和整数 K K K,你可以重复下列操作任意次:

  • 选择整数 1 ≤ i ≤ N − K 1\le i\le N-K 1iNK,交换 a i a_i ai a i + K a_{i+K} ai+K

问:是否能通过上述操作将 A A A按升序排列?

2 ≤ N ≤ 2 × 1 0 5 2\le N\le 2\times 10^5 2N2×105
1 ≤ K ≤ N − 1 1\le K\le N-1 1KN1
1 ≤ a i ≤ 1 0 9 1\le a_i\le 10^9 1ai109

输入格式

N   K N~K N K
a 1   …   a N a_1~\dots~a_N a1  aN

输出格式

如果可以达到目标,输出Yes;否则,输出No

样例

样例输入1

5 2
3 4 1 3 4

样例输出1

Yes

该样例中, A = ( 3 , 4 , 1 , 3 , 4 ) , K = 2 A=(3,4,1,3,4),K=2 A=(3,4,1,3,4),K=2。一种完成任务的操作如下:

  • 交换 a 1 a_1 a1 a 3 a_3 a3,此时 A = ( 1 , 4 , 3 , 3 , 4 ) A=(1,4,3,3,4) A=(1,4,3,3,4)
  • 交换 a 2 a_2 a2 a 4 a_4 a4,此时 A = ( 1 , 3 , 3 , 4 , 4 ) A=(1,3,3,4,4) A=(1,3,3,4,4),排序完成。

样例输入2

5 3
3 4 1 3 4

样例输出2

No

K = 3 K=3 K=3,无法将 A A A排序。

样例输入3

7 5
1 2 3 4 5 5 10

样例输出3

Yes

可以不进行操作。

分析

题目可以看成:在 a i , a K + i , a 2 K + i , … a_i,a_{K+i},a_{2K+i},\dots ai,aK+i,a2K+i, 1 ≤ i < K 1\le i<K 1i<K)中的元素是可以两两相邻交换的。那么,根据冒泡排序的原理,这些元素是可以直接排序并放入原位置上的。此时,只需依次对于 i = 1 , 2 , … , K − 1 i=1,2,\dots,K-1 i=1,2,,K1的上述序列并排序、放回原位,最终检查是否已被排成升序即可。

代码

#include <cstdio>
#include <set>
#include <algorithm>
#define maxn 200005
using namespace std;

int a[maxn], b[maxn];

int main()
{
	int n, k;
	scanf("%d%d", &n, &k);
	for(int i=0; i<n; i++)
	{
		scanf("%d", a + i);
		b[i] = a[i];
	}
	sort(b, b + n);
	for(int i=0; i<k; i++)
	{
		multiset<int> s1, s2;
		for(int j=i; j<n; j+=k)
		{
			s1.insert(a[j]);
			s2.insert(b[j]);
		}
		if(s1 != s2)
		{
			puts("No");
			return 0;
		}
	}
	puts("Yes");
	return 0;
}

特别: 本题涉及到很多数组操作,使用Python代码量非常小(使用数组切片和sorted()),所以也是一道很好的Python数组练习题。因此,这里破例提供Python示例代码:

n, k = map(int, input().split())
a = list(map(int, input().split()))
for i in range(k):
	a[i::k] = sorted(a[i::k])
print('Yes' if a == sorted(a) else 'No')

D - Together Square

题目大意

给定整数 N N N。求正整数对 ( i , j ) (i,j) (i,j)的个数,满足:

  • 1 ≤ i , j ≤ N 1\le i,j\le N 1i,jN
  • i × j i\times j i×j是一个完全平方数(即 1 2 , 2 2 , 3 2 , … 1^2,2^2,3^2,\dots 12,22,32,

1 ≤ N ≤ 2 × 1 0 5 1\le N\le 2\times 10^5 1N2×105

输入格式

N N N

输出格式

输出答案。

样例

N N N输出
4 4 4 6 6 6
254 254 254 896 896 896

分析

注意 N N N较大,所以最容易想到的 O ( n 2 ) \mathcal O(n^2) O(n2)暴力枚举肯定是不行的,然后仔细思考后发现可以枚举整数对 ( x , y ) (x,y) (x,y) 1 ≤ x , y ≤ ⌊ N ⌋ 1\le x,y\le\lfloor\sqrt N\rfloor 1x,yN ),当 x , y x,y x,y互质时将答案加上 N max ⁡ { x 2 , y 2 } \frac N {\max\{x^2,y^2\}} max{x2,y2}N,这样答案正确,建议读者自行思考原因。

时间复杂度计算:

  • 循环(次数 N \sqrt N N ,枚举 x x x
    • 循环(次数 N \sqrt N N ,枚举 y y y
      • gcd最大公约数算法(辗转相除法 log ⁡ max ⁡ { x , y } ≈ log ⁡ N \log\max\{x,y\}\approx\log\sqrt N logmax{x,y}logN ,判断互质)

综上,总时间复杂度为 O ( N × N × log ⁡ N ) = O ( N log ⁡ N ) \mathcal O(\sqrt N\times\sqrt N\times\log\sqrt N)=\mathcal O(N\log\sqrt N) O(N ×N ×logN )=O(NlogN )

代码

#include <cstdio>
using namespace std;

inline int gcd(int a, int b)
{
	while(b ^= a ^= b ^= a %= b);
	return a;
}

int main()
{
	int n = 0; char c;
	while((c = getchar()) != '\n')
		n = (n << 3) + (n << 1) + (c ^ 48);
	int t = __builtin_sqrt(n);
	long long ans = 0LL, x;
	for(int i=1; i<=t; i++)
		for(int j=i; j<=t; j++)
			if(gcd(i, j) == 1)
			{
				ans += (x = n / (i > j? i * i: j * j));
				if(i != j) ans += x;
			}
	printf("%lld\n", ans);
	return 0;
}

E - Small d and k

题目大意

给定一个由 N N N个点和 M M M条边组成的简单无向图。
对于每个 i = 1 , 2 , … , M i=1,2,\dots,M i=1,2,,M,第 i i i条边连接顶点 a i a_i ai b i b_i bi

已知 每个顶点的度数不超过3,回答下列 Q Q Q个查询,第 i i i个查询为:

  • 求与顶点 x i x_i xi距离不超过 k i k_i ki的点的下标之和

1 ≤ N , Q ≤ 1.5 × 1 0 5 1\le N,Q\le 1.5\times 10^5 1N,Q1.5×105
0 ≤ M ≤ min ⁡ { N ( N − 1 ) 2 , 3 2 N } 0\le M\le \min\{\frac{N(N-1)}2,\frac32N\} 0Mmin{2N(N1),23N}
1 ≤ a i < b i ≤ N 1\le a_i<b_i\le N 1ai<biN ( a i , b i ) (a_i,b_i) (ai,bi)互不相同。
1 ≤ x i ≤ N 1\le x_i\le N 1xiN 0 ≤ k i ≤ 3 0\le k_i\le 3 0ki3

输入格式

N   M N~M N M
a 1   b 1 a_1~b_1 a1 b1
⋮ \vdots
a M   b M a_M~b_M aM bM
Q Q Q
x 1   k 1 x_1~k_1 x1 k1
⋮ \vdots
x Q   k Q x_Q~k_Q xQ kQ

输出格式

输出 Q Q Q行。第 i i i行应包含第 i i i个查询的答案。

样例

样例输入

6 5
2 3
3 4
3 5
5 6
2 6
7
1 1
2 2
2 0
2 3
4 1
6 0
4 3

样例输出

1
20
2
20
7
6
20

样例解释:AtCoder 254E - Small d and k #sample

分析

注意这题数据范围,这是解体的关键:

  • 减少算法耗时:
    • 0 ≤ k ≤ 3 0\le k\le 3 0k3
    • 顶点度数   ≤ 3 ~\le3  3
    • 根据乘法原理,一次查询最大符合条件的顶点数为 3 3 + 1 = 28 3^3+1=28 33+1=28
  • 防止常数问题:
    • 1 ≤ N ≤ 1.5 × 1 0 5 1\le N\le \textbf{1.5}\times 10^5 1N1.5×105
    • 时间限制 3.5 s 3.5\text{s} 3.5s

因此,使用简单的暴力 BFS \text{BFS} BFS正好符合题目数据范围。详见代码。

代码

注意dis数组的清零操作,无需全部清零,只需把刚刚改过的清零即可。

#include <cstdio>
#include <queue>
#define maxn 150005
using namespace std;

vector<int> G[maxn];
int dis[maxn];

int main()
{
	int n, m;
	scanf("%d%d", &n, &m);
	while(m--)
	{
		int a, b;
		scanf("%d%d", &a, &b);
		G[a].push_back(b);
		G[b].push_back(a);
	}
	int Q; scanf("%d", &Q);
	for(int i=1; i<=n; i++) dis[i] = -1;
	while(Q--)
	{
		int x, k;
		scanf("%d%d", &x, &k);
		vector<int> ans;
		queue<int> q;
		q.push(x);
		dis[x] = 0;
		while(!q.empty())
		{
			int v = q.front(); q.pop();
			int d = dis[v];
			if(d <= k) ans.push_back(v);
			if(++d > k) continue;
			for(int u: G[v])
				if(dis[u] == -1)
				{
					dis[u] = d;
					q.push(u);
				}
		}
		int res = 0;
		for(int v: ans)
			res += v, dis[v] = -1;
		printf("%d\n", res);
	}
	return 0;
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值