AtCoder Beginner Contest 250 C~E 题解

46 篇文章 7 订阅
43 篇文章 5 订阅

C - Adjacent Swaps

题目大意

N N N个球从左到右排成一列。开始时,从左往右的第 i i i个球上写着数字 i i i
请执行 Q Q Q个操作,第 i i i个操作如下:

  • j =   N j=~N j= N个球中写着数字 x i x_i xi的球的位置
  • 如果 j = N j=N j=N,将其与第 j − 1 j-1 j1个球交换;否则,与第 j + 1 j+1 j+1个球交换。

求所有操作后的球上分别写的数字。详见输出格式。

2 ≤ N ≤ 2 × 1 0 5 2\le N\le 2\times 10^5 2N2×105
1 ≤ Q ≤ 2 × 1 0 5 1\le Q\le 2\times 10^5 1Q2×105
1 ≤ x i ≤ N 1\le x_i\le N 1xiN

输入格式

N   Q N~Q N Q
x 1 x_1 x1
⋮ \vdots
x Q x_Q xQ

输出格式

a i = N a_i=N ai=N个球中从左往右的第 i i i在所有操作结束后写的数,则按如下格式输出:
a 1   a 2   …   a n a_1~a_2~\dots~a_n a1 a2  an
a 1 , … , a n a_1,\dots,a_n a1,,an按顺序输出到一行,用空格隔开

样例

略,请自行前往AtCoder查看。

分析

根据数据范围可得,本题只能使用时间复杂度不超过 O ( N + Q log ⁡ n ) \mathcal O(N+Q\log n) O(N+Qlogn)的算法
因此,暴力模拟,即查找每个球对应的位置 j j j O ( N Q ) \mathcal O(NQ) O(NQ))肯定是行不通的。

但是很容易想到可以设置索引数组 p p p,使当 a i = x a_i=x ai=x时, p x = i p_x=i px=i
这样,对于每一个操作,只需 O ( 1 ) \mathcal O(1) O(1)的时间复杂度就能找到 x i x_i xi出现的位置。
交换时注意同时交换一下 a a a p p p中的元素即可。总时间复杂度 O ( N + Q ) \mathcal O(N+Q) O(N+Q)

代码

#include <cstdio>
#define maxn 200005
using namespace std;

inline void swap(int& x, int& y) { x ^= y ^= x ^= y; }

int pos[maxn], ans[maxn];

int main()
{
	int n, q;
	scanf("%d%d", &n, &q);
	for(int i=1; i<=n; i++)
		ans[i] = pos[i] = i;
	while(q--)
	{
		int x;
		scanf("%d", &x);
		int p1 = pos[x];
		int p2 = p1 == n? p1 - 1: p1 + 1;
		swap(pos[x], pos[ans[p2]]);
		swap(ans[p1], ans[p2]);
	}
	for(int i=1; i<=n; i++)
		printf("%d ", ans[i]);
	return 0;
}

D - 250-like Number

题目大意

当一个正整数 k k k满足以下条件时,我们称其为“与 250 250 250相似的”:

  • k = p × q 3 k=p\times q^3 k=p×q3,其中 p , q p,q p,q均为质数,且 p < q p<q p<q

求不超过 N N N的“与 250 250 250相似的” k k k的个数。

1 ≤ N ≤ 1 0 18 1\le N\le 10^{18} 1N1018

输入格式

N N N

输出格式

将答案输出为一个整数。

样例

N N N输出
250 250 250 2 2 2
1 1 1 0 0 0
123456789012345 123456789012345 123456789012345 226863 226863 226863

分析

看到数据范围后我们发现 N N N太大,不能盲目下手。
k = p × q 3 , k ≤ N k=p\times q^3,k\le N k=p×q3,kN可知, p × q 3 ≤ N ≤ 1 0 18 p\times q^3\le N\le 10^{18} p×q3N1018
又因为 p , q p,q p,q是质数,且 p < q p<q p<q可得, 2 ≤ p < q 2\le p<q 2p<q
因此,当 p p p最小时 q q q最大,所以 q ≤ N = 1 0 18 p = 2 3 ≈ 794000 q\le \sqrt[3]{\frac {N=10^{18}} {p=2}}\approx794000 q3p=2N=1018 794000

这时,可以想到筛出质数表,并对于每个质数 p p p计算最大的 q q q,此时质数 p < x ≤ q p<x\le q p<xq都能作为 q q q,因此将答案加上 p < x ≤ q p<x\le q p<xq的质数数量即可。当 p ≥ q p\ge q pq时,退出循环,输出结果即可。

计算 q q q时可以使用二分查找或者双指针算法快速处理。
总时间复杂度大约在 O ( n 7 22 ) \mathcal O(n^{\frac 7 {22}}) O(n227)

代码

本代码使用双指针实现。

#include <cstdio>
#include <cmath>
#include <vector>
#define maxp 794000
using namespace std;

using LL = long long;

bool bad[maxp];
vector<int> primes;

inline LL pow3(LL x) { return x * x * x; }

int main()
{
	bad[0] = bad[1] = true;
	for(int i=2; i<maxp; i++)
		if(!bad[i])
		{
			primes.push_back(i);
			for(int j=i<<1; j<maxp; j+=i)
				bad[j] = true;
		}
	LL n;
	scanf("%lld", &n);
	LL ans = 0LL;
	for(int i=0, j=primes.size()-1; i<j; i++)
	{
		while(j >= 0 && primes[i] * pow3(primes[j]) > n) j --;
		if(i >= j) break;
		ans += j - i;
	}
	printf("%lld\n", ans);
	return 0;
}

E - Prefix Equality

题目大意

给定长度为 N N N的正整数序列 A = ( A 1 , … , A N ) A=(A_1,\dots,A_N) A=(A1,,AN) B = ( B 1 , … , B N ) B=(B_1,\dots,B_N) B=(B1,,BN)
对于每个 1 ≤ i ≤ Q 1\le i\le Q 1iQ,给定两个正整数 x i , y i x_i,y_i xi,yi,回答如下格式的查询:

  • 判断集合 { A 1 , … , A x i } \{A_1,\dots,A_{x_i}\} {A1,,Axi} { B 1 , … , B y i } \{B_1,\dots,B_{y_i}\} {B1,,Byi}是否相等。

集合可以说成是序列排序并去重的结果,如序列 ( 9 , 3 , 5 , 3 , 4 ) (9,3,5,3,4) (9,3,5,3,4)对应的集合是 { 3 , 4 , 5 , 9 } \{3,4,5,9\} {3,4,5,9}

1 ≤ N , Q ≤ 2 × 1 0 5 1\le N,Q\le 2\times 10^5 1N,Q2×105
1 ≤ A i ≤ B i ≤ 1 0 9 1\le A_i\le B_i\le 10^9 1AiBi109
1 ≤ x i , y i ≤ N 1\le x_i,y_i\le N 1xi,yiN

输入格式

N N N
A 1   …   A N A_1~\dots~A_N A1  AN
B 1   …   B N B_1~\dots~B_N B1  BN
Q Q Q
x 1   y 1 x_1~y_1 x1 y1
⋮ \vdots
x Q   y Q x_Q~y_Q xQ yQ

样例

样例输入

5
1 2 3 4 5
1 2 2 4 3
7
1 1
2 2
2 3
3 3
4 4
4 5
5 5

样例输出

Yes
Yes
Yes
No
No
Yes
No

分析

本题做法很多。这里我们介绍使用哈希(Hash)的算法。
现在我们有一个很简单但明显错误的思路:
A A A B B B做一个前缀和,只计算不重复的元素,即
P A ( i ) = ∑ { A 1 , … , A i } P B ( i ) = ∑ { B 1 , … , B i } P_A(i)=\sum\{A_1,\dots,A_i\}\\ P_B(i)=\sum\{B_1,\dots,B_i\} PA(i)={A1,,Ai}PB(i)={B1,,Bi}
此时,只需判断 P A ( x i ) P_A(x_i) PA(xi) P B ( y i ) P_B(y_i) PB(yi)是否相等即可。时间复杂度为 O ( N + Q ) \mathcal O(N+Q) O(N+Q) O ( Q + N log ⁡ N ) \mathcal O(Q+N\log N) O(Q+NlogN)
构造hack数据也很简单,只需部分前缀和相等即可,如:

5
1 3 5 6 7
3 2 4 1 5
1
3 3

这样,因为 1 + 3 + 5 = 3 + 2 + 4 = 9 1+3+5=3+2+4=9 1+3+5=3+2+4=9,所以这样的程序会认为这是相等的序列,从而输出Yes,但显然 { 1 , 3 , 5 } ≠ { 3 , 2 , 4 } \{1,3,5\}\ne\{3,2,4\} {1,3,5}={3,2,4},因此答案为No,程序错误。

现在考虑改进这个思路,使其不容易被hack,可以使用一个哈希函数:
H ( x ) = x ( x + A ) ( x + B )   m o d   P H(x)=x(x+A)(x+B)\bmod P H(x)=x(x+A)(x+B)modP
其中 A , B , P A,B,P A,B,P一般取质数, H ( x ) H(x) H(x)即为 x x x对应的哈希值。(对 P P P取模是为了防止哈希值太大导致溢出)
显然,这样有一个很小的概率会产生哈希冲突(即不同的数得到相同的哈希值),但因为 A , B , P A,B,P A,B,P的取值太多,评测机没法针对性的hack,所以正常情况下都能通过(CF的Hack机制除外)。如果真担心有问题,可以采取双哈希,即对于一个 x x x,用两个不同的哈希函数计算哈希值,这样就几乎不可能出现哈希冲突了。

现在,前缀和变为:
P A ( i ) = ∑ { H ( A 1 ) , … , H ( A i ) }   m o d   P P B ( i ) = ∑ { H ( B 1 ) , … , H ( B i ) }   m o d   P P_A(i)=\sum\{H(A_1),\dots,H(A_i)\}\bmod P\\ P_B(i)=\sum\{H(B_1),\dots,H(B_i)\}\bmod P PA(i)={H(A1),,H(Ai)}modPPB(i)={H(B1),,H(Bi)}modP
还是按原来的思路,判断前缀和是否相等即可。
总时间复杂度为 O ( n ) \mathcal O(n) O(n)unordered_set/HashSet)或 O ( n log ⁡ n ) \mathcal O(n\log n) O(nlogn)set/TreeSet)。

代码

这里还是要提一点,就是使用哈希时有一个小技巧,即直接取 P = 2 32 − 1 P=2^{32}-1 P=2321unsigned int)或者 P = 2 64 − 1 P=2^{64}-1 P=2641unsigned long long),使整数自然溢出,省去了麻烦又耗时间的取模步骤。CodeForces上还是建议取较大的质数(常用的有 1 0 9 + 7 , 998244353 10^9+7,998244353 109+7,998244353)作为 P P P,以免被hack导致丢分。

这里我用的哈希函数为 H ( x ) = x ( x + 93 ) ( x + 117 )   m o d   ( 2 32 − 1 ) H(x)=x(x+93)(x+117)\bmod(2^{32}-1) H(x)=x(x+93)(x+117)mod(2321),即 A = 93 , B = 117 , P = 2 32 − 1 A=93,B=117,P=2^{32}-1 A=93,B=117,P=2321

#include <cstdio>
#include <unordered_set>
#define maxn 200005
using namespace std;

inline int read()
{
	char c;
	while((c = getchar()) < '0' || c > '9');
	int res = c ^ 48;
	while((c = getchar()) >= '0' && c <= '9')
		res = (res << 3) + (res << 1) + (c ^ 48);
	return res;
}

unsigned suma[maxn], sumb[maxn];
inline void hread(unsigned* psum, int n)
{
	unordered_set<int> s;
	for(int i=1, x; i<=n; i++)
	{
		psum[i] = psum[i - 1];
		if(s.insert(x = read()).second)
			psum[i] += x * unsigned(x + 93) * unsigned(x + 117);
	}
}

int main()
{
	int n = read();
	hread(suma, n);
	hread(sumb, n);
	for(int q=read(); q--;)
		puts(suma[read()] == sumb[read()]? "Yes": "No");
	return 0;
}
  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值