求一个等式的进制先用数学展开,然后化解,对个位求余可以得出n的值
例1
如果在某系统中,等式15*4=112成立,则系统采用的是()进制? A
A:6 B:7 C:8 D:10
step 1: 数学展开
(n+5)*4=n^2+n+2
step 2: 化解
4n+20=n^2+n+2
step 3: 对左右两边个位求余
20%n=2 //2对n求余定为2
所以可得出n为6
我们可以看出对等式两边的个位数进行整除可得n的值,即(4*5)%n=2,所以n为6
但是如果遇到一些特殊的题
例2
假设在n进制下,567*456=150216,n的值为()? D
A:9 B:10 C:12 D:18
我们以第一题的做法可得(7*6)%n=6
我们发现当n=9,12,18时都可以,所以
step 1: 数学展开
(5n^2+6n+7)*(4n^2+5n+6)=n^5+5*n^4+2*n^2+n+6
step 2: 化解
20n^4+49n^3+88n^2+71n+42=n^5+5*n^4+2*n^2+n+6
step 3: 对左右两边同时除以n,再求余
71%n+42/n%n=1%n+6/n%n=1
(71+42/n)=1
所以n的值为18
由以上两道题我们可以知道对等式两边进行对n求余即可得出n的值,若遇到都可行的时候,可以对等式两边先进行除法运算,然后再进行求玉运算。