梦里能到达的地方,总有一天,脚步也能到达。

做一个既有广度又有深度的程序猿

二分查找之java

简述:
二分查找又称折半查找。优点是比较次数少,查找速度快,平均性能好。
缺点是要求待查表为有序表,因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
思想:
二分查找的基本思想是将n个元素分成大致相等的两部分,用数组array[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止, 如果a[n/2]>x,则只要在数组a的左半部分继续搜索x, 如果x>a[n/2],则只要在数组a的右半部搜索x.

public class BinarySearch {
    public static void main(String[] args) {
        int[] array = {1, 2, 3, 4, 5, 6, 7, 8};
        //该数组必须是有序的
        int index = search(array, 8);
        System.out.println(index);
    }

    static int search(int[] number, int target) {
        int low = 0;
        int upper = number.length - 1;
        // 增加low或者减少upper,直到找到元素
        while (low <= upper) {
            int mid = (low + upper) / 2;
            // 判断target的位置
            if (target == number[mid]) {
                return mid;
            } else if (target < number[mid]) {
                upper = mid - 1;
            } else if (target > number[mid]) {
                low = mid + 1;
            }
        }
        //找不到后返回-1
        return -1;
    }
}

时间复杂度分析
二分查找最好情况无疑就是可以一次找到元素,时间复杂度是o(1)。
那我们来分析最坏情况,其实最主要就是循环的次数,假如有4个元素,最坏情况就需要经过三次循环才能找到元素,设n为元素个数,x就是循环的次数,一直在长度为n, n/2, n/4 ,…. n/2^(x-1)的数组中找元素,当长度等于1时找到元素,所以令n/2^(x-1)等于1,这时找到元素,取log后可得x=log2n +1,所以时间复杂度就是o(log2n)

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ws15286832380/article/details/46822319
文章标签: java算法
个人分类: 算法
想对作者说点什么? 我来说一句

java数组二分查找

2015年11月02日 2KB 下载

没有更多推荐了,返回首页

不良信息举报

二分查找之java

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭