1.配置caffe环境
[请参考此篇博客:http://blog.csdn.net/ws_20100/article/details/48850449]
本篇介绍如何在caffe环境下,实现"图像对图像"的卷积神经网络的训练。
2.文件结构
在配置好的caffe文件夹中,进入examples目录,创建CNN文件夹,并进入文件夹
$ cd caffe-master/examples/
$ mkdir CNN
$ cd CNN/
在CNN文件夹下面创建子文件夹
$ mkdir model snapshot TestPhotos TestLabels TrainPhotos TrainLabels
其中,
model用于以后存储卷积核矩阵和偏置向量;
snapshot用于存储训练中备份的caffe模型,每一段时间存储一次,防止断电等一些情况;
TrainPhotos、TrainLabels分别存储训练集输入和监督样本;
TestPhotos、TestLabels分别存储测试集输入和监督样本,不直接参与到训练中。
然后,将训练所用的输入样本和监督样本分别放入到TrainPhotos和TrainLabels中去。注意,样本文件名无所谓,但是排列次序必须一一对应。同样,将测试所用的输入样本和监督样本分别放入到TestPhotos和TestLabels中去。
3.产生训练和测试数据
1.)产生路径文件
在CNN文件夹下面(以下均是在此文件夹下)创建两个路径文件。
$ vim train.txt
输入内容:
examples/CNN/train.h5
:wq保存文档。
$ vim test.txt
输入内容:
examples/CNN/test.h5
:wq保存文档。
2.)产生训练数据
$ vim generate_train.m
输入内容