使用GPU在caffe上进行CNN训练

本文介绍了如何在Ubuntu环境下,使用Caffe进行GPU加速的卷积神经网络(CNN)训练。从配置Caffe环境、设定文件结构、生成训练和测试数据,到建立训练文件、执行训练、保存滤波器,最后到CNN模型的重构,详细阐述了整个流程。通过MATLAB脚本处理训练数据,生成训练和测试数据文件,然后配置solver和net文件以定义网络结构和训练参数。使用train.sh脚本启动训练,并在训练完成后,将滤波器保存为MAT文件,便于后续使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.配置caffe环境

[请参考此篇博客:http://blog.csdn.net/ws_20100/article/details/48850449]

本篇介绍如何在caffe环境下,实现"图像对图像"的卷积神经网络的训练。



2.文件结构

在配置好的caffe文件夹中,进入examples目录,创建CNN文件夹,并进入文件夹

$ cd caffe-master/examples/

$ mkdir CNN

$ cd CNN/

CNN文件夹下面创建子文件夹

$ mkdir model snapshot TestPhotos TestLabels TrainPhotos TrainLabels

其中,

model用于以后存储卷积核矩阵和偏置向量;

snapshot用于存储训练中备份的caffe模型,每一段时间存储一次,防止断电等一些情况;

TrainPhotosTrainLabels分别存储训练集输入和监督样本;

TestPhotosTestLabels分别存储测试集输入和监督样本,不直接参与到训练中。

然后,将训练所用的输入样本和监督样本分别放入到TrainPhotos和TrainLabels中去。注意,样本文件名无所谓,但是排列次序必须一一对应。同样,将测试所用的输入样本和监督样本分别放入到TestPhotos和TestLabels中去。


3.产生训练和测试数据

1.)产生路径文件

CNN文件夹下面(以下均是在此文件夹下)创建两个路径文件。

$ vim train.txt

输入内容:

examples/CNN/train.h5

:wq保存文档。

$ vim test.txt

输入内容:

examples/CNN/test.h5

:wq保存文档。

2.)产生训练数据

$ vim generate_train.m

输入内容

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值