首先,块的大小确定的话,可以发现方案最多只有1种
By神犇wangyurzee7
有了这个结论后就非常好做了,记录一下当块的大小为x时,可以做块的根的数量,即满足x|size[i]的i的数量,可以考虑nlogn的线性筛的做法
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<iostream>
#include<algorithm>
#define R 998244353
using namespace std;
int sc()
{
int i=0; char c=getchar();
while(c>'9'||c<'0')c=getchar();
while(c>='0'&&c<='9')i=i*10+c-'0',c=getchar();
return i;
}
int size[1000001],sum[1000001];
int head[1000001],nxt[2000001],lst[2000001];
int tot,n,ans;
void insert(int x,int y)
{
lst[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs(int x,int f)
{
size[x]=1;
for(int i=head[x];i;i=nxt[i])
if(lst[i]!=f)
{
dfs(lst[i],x);
size[x]+=size[lst[i]];
}
sum[size[x]]++;
}
int main()
{
n=sc();
for(int i=1;i<n;i++)
{
int x=sc(),y=sc();
insert(x,y);
insert(y,x);
}
dfs(1,0);
for(int i=1;i<=n;i++)
{
for(int j=i+i;j<=n;j+=i)
sum[i]+=sum[j];
if(i*sum[i]==n) ans++;
}
cout<<ans;
return 0;
}