题目描述
一个如下的 6×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 2 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 3 个解。最后一行是解的总个数。
输入格式
一行一个正整数 n,表示棋盘是 n×n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
输入输出样例
输入 #1复制
6
输出 #1复制
2 4 6 1 3 5 3 6 2 5 1 4 4 1 5 2 6 3 4
说明/提示
【数据范围】
对于 100% 的数据,6≤n≤13。
题目翻译来自NOCOW。
USACO Training Section 1.5
#include<bits/stdc++.h>
using namespace std;
const int N=15;
char d[N][N];
int n;
int count1=0;
bool a[N],b[2*N],c[2*N];
void dfs(int u)
{
if(u==n)
{
count1++;
if(count1<=3)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(d[i][j]=='q')
{
cout<<j+1<<" ";
}
}
}
cout<<endl;
}
}
for(int j=0;j<n;j++)
{
if(!a[j]&&!b[n-u+j-1]&&!c[j+u])
{
d[u][j]='q';
a[j]=true;
b[n-u+j-1]=true;
c[j+u]=true;
dfs(u+1);
d[u][j]='.';
a[j]=false;
b[n-u+j-1]=false;
c[u+j]=false;
}
}
}
int main ()
{
cin>>n;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
d[i][j]='.';
}
}
dfs(0);
cout<<count1<<endl;
return 0;
}