推荐一本网络科学入门书

推荐一本网络科学入门书

 

具体见参考1.

本书是M. E. J. Newman的代表作:《Networks: An Introduction》。

书目录:

Table of Contents

  • Preface
  • 1 Introduction
  • 2 Technological networks
    • 2.1 The Internet
    • 2.2 The telephone network
    • 2.3 Power grids
    • 2.4 Transportation networks
    • 2.5 Delivery and distribution networks
  • 3 Social networks
    • 3.1 The empirical study of social networks
    • 3.2 Interviews and questionnaires
    • 3.3 Direct observation
    • 3.4 Data from archival or third-party records
    • 3.5 Affiliation networks
    • 3.6 The small-world experiment
    • 3.7 Snowball sampling, contact tracing, and random walks
  • 4 Networks of information
    • 4.1 The World Wide Web
    • 4.2 Citation networks
    • 4.3 Other information networks
  • 5 Biological networks
    • 5.1 Biochemical networks
    • 5.2 Neural networks
    • 5.3 Ecological networks
  • 6 Mathematics of networks
    • 6.1 Networks and their representation
    • 6.2 The adjacency matrix
    • 6.3 Weighted networks
    • 6.4 Directed networks
    • 6.5 Hypergraphs
    • 6.6 Bipartite networks
    • 6.7 Trees
    • 6.8 Planar networks
    • 6.9 Degree
    • 6.10 Paths
    • 6.11 Components
    • 6.12 Independent paths, connectivity, and cut sets
    • 6.13 The graph Laplacian
    • 6.14 Random walks
  • 7 Measures and metrics
    • 7.1 Degree centrality
    • 7.2 Eigenvector centrality
    • 7.3 Katz centrality
    • 7.4 PageRank
    • 7.5 Hubs and authorities
    • 7.6 Closeness centrality
    • 7.7 Betweenness centrality
    • 7.8 Groups of vertices
    • 7.9 Transitivity
    • 7.10 Reciprocity
    • 7.11 Signed edges and structural balance
    • 7.12 Similarity
    • 7.13 Homophily and assortative mixing
  • 8 The large-scale structure of networks
    • 8.1 Components
    • 8.2 Shortest paths and the small-world effect
    • 8.3 Degree distributions
    • 8.4 Power laws and scale-free networks
    • 8.5 Distributions of other centrality measures
    • 8.6 Clustering coefficients
    • 8.7 Assortative mixing
  • 9 Basic concepts of algorithms
    • 9.1 Running time and computational complexity
    • 9.2 Storing network data
    • 9.3 The adjacency matrix
    • 9.4 The adjacency list
    • 9.5 Trees
    • 9.6 Other network representations
    • 9.7 Heaps
  • 10 Fundamental network algorithms
    • 10.1 Algorithms for degrees and degree distributions
    • 10.2 Clustering coefficients
    • 10.3 Shortest paths and breadth-first search
    • 10.4 Shortest paths in networks with varying edge lengths
    • 10.5 Maximum flows and minimum cuts
  • 11 Matrix algorithms and graph partitioning
    • 11.1 Leading eigenvectors and eigenvector centrality
    • 11.2 Dividing networks into clusters
    • 11.3 Graph partitioning
    • 11.4 The Kernighan--Lin algorithm
    • 11.5 Spectral partitioning
    • 11.6 Community detection
    • 11.7 Simple modularity maximization
    • 11.8 Spectral modularity maximization
    • 11.9 Division into more than two groups
    • 11.10 Other modularity maximization methods
    • 11.11 Other algorithms for community detection
  • 12 Random graphs
    • 12.1 Random graphs
    • 12.2 Mean number of edges and mean degree
    • 12.3 Degree distribution
    • 12.4 Clustering coefficient
    • 12.5 Giant component
    • 12.6 Small components
    • 12.7 Path lengths
    • 12.8 Problems with the random graph
  • 13 Random graphs with general degree distributions
    • 13.1 Generating functions
    • 13.2 The configuration model
    • 13.3 Excess degree distribution
    • 13.4 Clustering coefficient
    • 13.5 Generating functions for degree distributions
    • 13.6 Number of second neighbors of a vertex
    • 13.7 Generating functions for the small components
    • 13.8 Giant component
    • 13.9 Size distribution for small components
    • 13.10 Power-law degree distributions
    • 13.11 Directed random graphs
  • 14 Models of network formation
    • 14.1 Preferential attachment
    • 14.2 The model of Barabasi and Albert
    • 14.3 Further properties of preferential attachment models
    • 14.4 Extensions of preferential attachment models
    • 14.5 Vertex copying models
    • 14.6 Network optimization models
  • 15 Other network models
    • 15.1 The small-world model
    • 15.2 Exponential random graphs
  • 16 Percolation and network resilience
    • 16.1 Percolation
    • 16.2 Uniform random removal of vertices
    • 16.3 Non-uniform removal of vertices
    • 16.4 Percolation in real-world networks
    • 16.5 Computer algorithms for percolation
  • 17 Epidemics on networks
    • 17.1 Models of the spread of disease
    • 17.2 The SI model
    • 17.3 The SIR model
    • 17.4 The SIS model
    • 17.5 The SIRS model
    • 17.6 Epidemic models on networks
    • 17.7 Late-time properties of epidemics on networks
    • 17.8 Late-time properties of the SIR model
    • 17.9 Time-dependent properties of epidemics on networks
    • 17.10 Time-dependent properties of the SI model
    • 17.11 Time-dependent properties of the SIR model
    • 17.12 Time-dependent properties of the SIS model
  • 18 Dynamical systems on networks
    • 18.1 Dynamical systems
    • 18.2 Dynamics on networks
    • 18.3 Dynamics with more than one variable per vertex
    • 18.4 Synchronization
  • 19 Network search
    • 19.1 Web search
    • 19.2 Searching distributed databases
    • 19.3 Message passing
  • References
  • Index

 

      

 

参考文献:

1.      Networks-an-introduction http://www-personal.umich.edu/~mejn/networks-an-introduction/  

 

 

 

展开阅读全文

没有更多推荐了,返回首页