题目:
Given n
balloons, indexed from 0
to n-1
. Each balloon is painted with a number on it represented by array nums
. You are asked to burst all the balloons. If the you burst balloon i
you will get nums[left] * nums[i] * nums[right]
coins. Here left
and right
are adjacent indices of i
. After the burst, the left
and right
then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
思路:将大问题分割成小问题,对于[a1,a2,a3,a4,a5,a6,......,an],将分割成两个子整体,分割点为k,则得到 N1 = [a1,a2,a3,....,a(k-1)], N2 = [a(k+1),a(k+2),.....,an]。这里分割点k的意义是踩破了第k个气球。于是把整体分成了两部分,问题在于,根据计算规则,k气球破了之后,a(k-1)和a(k+1)会变成相邻的,如果此时踩a(k-1)或者a(k+1),则都会收到另一个子整体的影响,这样的话,两个子问题就不独立了。
所以设k为对于整体N,最后一个被破掉的气球。那么在k被弄破之前,k左边及右边并不会相互影响,于是就成功构造出子问题。
状态转移方程为:dp[left][right] = max(dp[left][right], dp[left][i] + nums[left] * nums[i] * nums[right] + dp[i][right]);
其中 left<i<right , dp[left][right]即为当前子问题:第left和第right之间位置的气球的maxcoin。
当然,要将nums的头和尾分别加上一个元素1。
具体代码如下:
代码:
C++实现
class Solution {
public:
int maxCoins(vector<int>& nums) {
nums.insert(nums.begin(), 1);
nums.push_back(1);
int n = nums.size();
int dp[n][n] = {};
for (int k = 2; k < n; k ++){
for (int left = 0; left < n - k; left ++){
int right = left + k;
for (int i = left + 1; i < right; i ++){
dp[left][right] = max(dp[left][right], dp[left][i] + nums[left] * nums[i] * nums[right] + dp[i][right]);
}
}
}
return dp[0][n-1];
}
};