
机器学习
iTensor
中科院某所渣硕,瞎研究自然语言处理方向。
展开
-
K近邻(KNN)算法---Python实现(一)
K近邻算法理论不再多述,点到点距离使用的是欧式距离,即平时数学所学的那个数学公式:√(x₁-x₂)²+(y₁-y₂)² 。代码如下:import numpy as npimport operatorfrom os import listdir#定义样本点和标签def creatDataSet(): group = np.array([[1.0, 1.1], [1.0, 1.0], [原创 2017-10-05 20:23:12 · 357 阅读 · 0 评论 -
K近邻(KNN)算法(二)---实现约会匹配
参考 测试代码:import numpy as npimport operatorimport matplotlib.pyplot as pltdef fileReader(filename): fr = open(filename) numlines = len(fr.readlines()) returnMat = np.zeros((numline...转载 2017-10-28 23:26:35 · 1437 阅读 · 0 评论 -
XGBoost使用之安装
安装请参考这里转载 2017-12-25 21:00:52 · 266 阅读 · 0 评论 -
隐马尔科夫模型
隐马尔科夫HMM序言基本概念功能快捷键如何改变文本的样式插入链接与图片生成一个适合你的列表设定内容居中、居左、居右SmartyPantsKaTeX数学公式序言最近在做序列标注小项目练手,重新复习隐马尔科夫模型。重点是HMM模型的三个问题及前向、后向和维特比算法。基本概念功能快捷键撤销:Ctrl/Command + Z重做:Ctrl/Command + Y加粗:Ctrl/Command...原创 2019-01-17 13:41:06 · 526 阅读 · 0 评论 -
XGboost小结
集成学习集成学习是将多个模型组合成一个模型的方法,一般是将学习到的多个弱学习器(基分类器)进行组合,构成一个强学习器,集诸子百家之大成。根据组合方式不同,又分为 $Bagging $ 和 BoostingBoostingBoosting ,前者代表算法是随机深林,后者代表是 AdaBoostAdaBoostAdaBoost 、GBDTGBDTGBDT 、XGBoostXGBoostXGBoost...原创 2019-09-03 08:32:12 · 189 阅读 · 0 评论 -
Logistic Regression小结
逻辑回归背景逻辑回归是用回归的方法做分类。假设数据服从 0-1 分布(伯努利分布),那么随机变量 XXX 只有正类 1 和 负类 0 两个选择,并且相应的概率为:ppp 和 1−p1-p1−p 。可以使用线性回归方法,寻找判别函数 g(x)=θ0x0+θ1x1+...+θnxng(x) = \theta_0 x_0 + \theta_1 x_1 +...+\theta_n x_ng(x)=...原创 2019-09-03 08:33:35 · 158 阅读 · 0 评论